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Abstract. Color constancy is the ability to correctly perceive an object’s color 
regardless of illumination. Within the controlled, color-coded environments in 
which many robots operate (such as RoboCup), engineers have been able to 
avoid the color constancy problem by using straightforward mappings of pixel 
values to symbolic colors. However, for robots to perform color vision tasks 
under natural light the color constancy problem must be addressed. We have 
developed a color vision system which allows for the color space signatures of 
different symbolic colors to overlap. This raises the question: if a specific pixel 
value can be mapped to multiple symbolic colors, how does the robot determine 
which color is the “correct” one? Context plays an important role. We adopt a 
knowledge driven approach which allows the robot to reason about uncertain 
color values. The system is fully implemented on a Sony AIBO. 

1   Introduction 

Within the color-coded world of RoboCup 1, most teams use color image segmentation 
techniques to assist with the identification of relevant objects, such as the ball, goals, 
landmarks and other robots. Generally, the vision systems developed for RoboCup 
take advantage of the engineered RoboCup environment – where the lighting is 
bright, evenly dispersed and constant, and the colors of important objects highly 
distinct – by providing a one-to-one mapping between pixel values and symbolic 
colors, i.e. for any given raw pixel value there is a maximum of one corresponding 
symbolic color class. 

Such systems ignore the reality that even within the controlled RoboCup 
environment the colors of important objects do indeed overlap within the color space. 
For exa mple, many teams within the legged-league are familiar with the problem that 
when in shadow or dim light, the orange of the soccer ball can appear to be the same 
color as the red uniforms worn by one team of robots. Such color misclassifications 
can have dire consequences for system performance, as witnessed by many a robot 

                                                                 
1 http://www.robocup.org 
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chasing the red uniform worn by a fellow robot, guided by the misconstrued belief 
that the red robot is in fact the orange soccer ball. 

Color constancy is the ability to perceive an object’s color correctly regardless of 
illumination [1]. To help overcome this problem, we have developed a color vision 
system which allows for a pixel’s raw data value to be mapped to a set of many 
possible symbolic color classes. However, introducing such a relationship raises the 
question: if a specific pixel value can belong to multiple symbolic colors, how does 
the robot determine which color is the “correct” one? In this paper we detail our 
approach which allows the robot to reason about uncertain color values. The system is 
completely implemented on a Sony AIBO2, and an initial version was used with great 
success at RoboCup 2004. 

2   Color Constancy and Mobile Robotics 

The appearance of a surface’s color is dependent upon the complex interaction of a 
number of factors, including the reflectance properties of the surface, the camera, and 
the lighting conditions. A change in any of these factors can affect an object’s 
apparent color. Illumination is rarely constant under natural light. Even when lighting 
is relatively constant, the viewing geometry for mobile robots is not. If we consider 
the legged-league of RoboCup, in which teams of Sony AIBOs play soccer, the 
viewing geometry is consistently shifting as the robot’s camera is located in, and 
moves with, the robot’s head. For example, the robot’s own head often casts shadows 
over the ball. 

Mobile robots must also compensate for imperfect and noisy sensors. For example, 
the camera on the AIBO ERS7 has a “fisheye” effect which produces a blue 
discoloration around the edge of the camera. The camera also discriminates dark 
colors poorly, making it difficult to distinguish between colors such as the dark grey 
skin of an AIBO ERS210, the black pants of a referee, field green in shadow, or the 
blue team’s uniform. Also, the fact that a mobile robot is indeed mo bile can affect 
camera performance. In robotic soccer robots frequently collide, and for legged robots 
there is an element of “bounce” when the robots walk. Motions such as these can 
cause color distortion and blur within the images captured by the robot’s camera. 
Finally, any solution must be capable of operating in real-time within the limited 
computational resources provided by the robot’s hardware. 

3   Prior Work 

There is an enormous body of literature regarding computational color constancy. 
However, the vast majority of this research focuses on static images, database image 
retrieval, and off-board processing. The general aim of computational color constancy 
is to determine the effect of the unknown illuminant(s) in a scene, and then to correct 

                                                                 
2 http://www.sony.net/Products/aibo/ 
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the image by either mapping to an illumination invariant representation, or by 
correcting for the illuminant. 

In terms of color constancy applied to mobile robots there is a much smaller body 
of knowledge. Many approaches use color insensitive algorithms to assist with object 
or color recognition, so that once an object or color is recognized, the robot can 
survey the pixel values within the image, and then use these values to update color 
tables dynamically, e.g. [2], [3], [4], [5]. Another method is to use image statistics, 
either from a single image or a series of images, to determine a global scene 
illuminant - the rationale being if lighting conditions can be accurately classified, then 
an appropriate color mapping between raw pixel values and symbolic colors can be 
selected by the robot, e.g. [6] [7]. Lastly, an alternative approach is to pre-process an 
image to improve the separation of colors within the color space so that symbolic 
classes are more tightly clustered around a central point, e.g. [8]. 

The area of specific concern in this paper is determining symbolic color class 
membership in robotic color vision tasks when the symbolic colors have substantial 
overlap within a color space, even when the lighting conditions are relatively 
constant. Within RoboCup most teams avoid the problem by adding controls to their 
color calibration process which govern overlap and outliers for symbolic colors within 
the color space (e.g. [9], [10]). Mayer et al. [11] reported that when playing middle-
size league soccer under natural light they experienced substantial overlap between 
white and other symbolic colors. Their unsatisfactory solution was to simply give 
“priority” to colors other than white. A common problem within the legged-league is 
that when looking down at the orange ball it can appear red, and one team [12] tried 
to compensate for this by building two color tables – one for when the robot is 
looking down, and one for all other situations. However, they report mixed success, as 
orange tends to merge with red and having two color tables did not solve their 
problems of color misclassification. In the most related approach to our work, [13] 
report on initial attempts to identify overlapping color signatures within the color 
space. They describe pixel values for which no overlap exists as “core” colors, and 
pixel values for which overlap exists as “maybe” colors.  

4   Our Approach 

Rather than focusing on building a color constancy system that can overcome drastic 
lighting changes through mathematical calculations of the scene illuminant, we have 
focused our efforts on developing a vision system which can provide an expressive 
representation for reasoning about the uncertainty of colors. We are motivated by our 
longer term aim of allowing the robots to reason about the color of pixels and objects 
using their knowledge about the environment, such as lighting conditions, camera, 
and prior experiences.  

The first step of our approach to the color constancy problem is to identify the 
pixel values of different symbolic colors that overlap in color space, and instead of 
removing or ignoring these particular pixel values, we provide the robot with the 
complete set of possible candidate colors for any given pixel value. Importantly, this 
reduces the search space for classifying pixel values whose color signatures overlap. 
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Secondly, we created a symbolic color class called “dark noise” to capture dark areas 
within the image in which much color overlap occurs, such as shadow. Next, the color 
classification algorithm assigns each pixel a value which indicates the set of possible 
colors for that pixel. For pixel values with more than one possible color, color 
classification relies upon local image area statistics, the pose of the robot, and other 
heuristic based knowledge. 

4.1 Image Sampling and Training 

We use a color labeling process in which a human trainer labels  regions within the 
image that correspond to the objects of interest, such as the ball, field, robot uniforms, 
landmarks, and so forth. A custom built software system, using a relational database, 
stores every unique raw pixel value “p” that the user selects for every symbolic color 
“c”. Thus, given a set of symbolic colors, e.g. C = {white, green, pink , orange …}, it 
is possible for any pixel value to be a member of an arbitrarily assigned subset of C, 
depending upon the pixel to symbolic color relationships identified by the human 
trainer. We call this subset of C the candidate colors for a pixel value. While many 
pixel values will share the same symbolic color relationships, and hence candidate 
colors, e.g. p1 ≡ p2, invariably a large proportion of pixel values will have different 
symbolic color relationships. For example, p1 ∈ {green, robot blue, beacon blue}, p2 
∈ {orange, red}, p3 ∈ {orange}, and so forth. In accordance with the terminology 
used in [18], we call pixel values for which there is only one candidate color “core-
colors” (e.g. p ∈ {orange}), and pixel values for which there are multiple candidate 
colors “maybe-colors” (e.g. p ∈ {orange, red}). In other words, a core color is a pixel 
value for which there exists no overlap within the color space – they have only ever 
been assigned to one symbolic color - while a “maybe-color” is a pixel value which 
has been assigned to two or more symbolic colors.  

At any point during the training process, the user can generate three artifacts that 
are required by the robot’s vision system: 
1. A structured file containing the complete set of unique candidate color 

combinations, with each combination possessing a unique index for the purposes of 
identification. 

2. A color lookup table, which for every possible raw pixel value, provides an index 
to the corresponding set of candidate colors. 

3. A file containing the mean (prototypical) value for each symbolic color in terms of 
raw pixel value. 

4.2 Color Labeling and Image Segmentation 

Our color calibration system has provided our robots with a more detailed level of 
color perception. In previous systems a particular pixel value was either unknown, or 
it belonged to a specific symbolic color. Now, a pixel value can be either unknown, 
belong to one specific symbolic color, or belong to a specific subset of the entire 
spectrum of symbolic colors. Thus, for many pixels within the image we are forced to 
make a new decision: which color is the correct one? To answer this question we 
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trialed a variety of simple and efficient computational techniques, all of which can 
operate in real-time on both an ERS7, as well as the older and more computationally 
challenging ERS210. 

The algorithm which provided best results for varying lighting conditions within 
our research laboratory was surprisingly simple. The algorithm takes advantage of the 
distinction between core colors and maybe-colors, by treating core colors as 
influential local area predictors for maybe-colors. For example, if a maybe color pixel 
could be either red or orange, but is surrounded by more orange core colors than red 
core colors, then it will be assigned the color orange. By only considering candidate 
colors, and not the complete set of colors, we are able to reduce the search space, 
increase the speed of the algorithm, and provide surprisingly natural results. In the 
absence of candidate core colors within a local area of the image (which can occur in 
images in which there are large concentrations of maybe-colors), or when there is an 
equal abundance of different neighboring candidate colors (e.g. 4 red and 4 orange 
neighboring pixels), Manhattan distance metric is used to find the closest candidate 
color. However, our aim is not to present, or find, the most sophisticated algorithm for 
correctly color segmenting an image, but rather to demonstrate how knowledge of 
relationships between pixel values and overlapping symbolic color signatures is a 
powerful alternative for overcoming color constancy issues. Code containing the 
implementation of this algorithm can be obtained from [14]. 

4.3 Results 

Fig. 2 displays a raw image taken from an ERS7, together with images indicating 
the maybe colors within the image and the final segmented image. 

 

Fig. 1. An image from an AIBO ERS7 (left), the overlapping colors in the corresponding image 
are represented in purple (centre), and the processed image in which overlapping colors are 
assigned to symbolic colors (right). In the raw image there is a blue discoloration around the 
edge of the image, and there is little contrast or separation between the robot’s blue uniform, 
shadows on the field, and the darker colors of each robot. The blue uniform consists almost 
entirely of maybe-colors. 

A consistently surprising feature of processed images was the ability to accurately 
classify the regions of the image which corresponded to shadows on the field, and in 
some cases also on the robot. While such features are currently not used by our object 
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recognition routines, models of color constancy which involve some level of scene 
understanding will require robots to detect such features. Fig. 3 displays an image in 
which two robots almost collide, and the proximity of the two robots causes a 
decrease in the illu mination within the image.  

 
 

 
Fig. 2. Raw image from an AIBO ERS7 (left), the overlapping colors in the corresponding 
image are represented in purple (centre), and the processed image in which overlapping colors 
are assigned to symbolic colors (right). The vision system is able to correctly segment the blue 
of the robot’s uniform, and the area of shadow underneath the robot. 

To demonstrate our results we have displayed images that we feel are indicative of 
the vision system’s general performance. It is interesting to note that evaluating the 
performance of a color constancy system empirically is challenging. For any color 
constancy system there exists no automated method for recording the number or 
percentage of pixels within each image that are classified “correctly”. Such notions of 
correctness or ground truth must be specified manually by a human tester. In much of 
the robotic research relating to color constancy systems are evaluated through 
behavioral performance tests. However, the performance of behaviors is also related 
to the performance of higher level routines (e.g. object recognition). Evaluating the 
performance of perception systems is an area of increasing significance for robotics 
[15]. 

One method adopted to evaluate the system’s robustness was to vary the lighting 
conditions, and to also change the camera settings of the system. We were able to 
create color calibration tables that could function over a range of camera settings and 
lighting conditions.  Fig. 4 displays an image in which the camera shutter speed was 
set at “fast”, but the calibration tables used were created when using the “medium” 
shutter speed (effectively decreasing the brightness within the image). 
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Fig. 3. Raw image from an AIBO ERS7 taken at fast shutter speed (left).  The color tables used 
to segment the image were created at medium shutter speed. Due to the darker conditions an 
increased amount of overlap colors were present in the image (centre). Large parts of the ball 
overlap with robot red. The processed image effectively segments the ball and most of the 
robot’s uniform (right). 

5 Discussion 

We have implemented a novel approach to deal with color constancy. Rather than 
avoiding or removing overlapping color space signatures, we have developed a 
system which uses the relationships between pixel values and overlapping symbolic 
color signatures to segment color images. 

Our approach offered several immediate benefits. Color calibration can be 
undertaken more quickly, as the calibration method encourages the human trainer to 
identify all possible pixel values for each color of interest, rather than avoiding those 
that may cause misclassification (e.g. those that occur in shadow or on the borders of 
different objects within the image). Image segmentation has improved due to richer 
and more expressive color tables. Lastly, object recognition has also improved, due to 
not only image segmentation performance, but because object recognition routines 
can reason about the different levels of color uncertainty indicated by core colors, 
maybe colors, and unknown colors. For example, object recognition routines can 
exploit simple statistics, such as the percentage of maybe-colors within a blob, to 
reason about the likelihood of false identification of an object. 

Future research will involve developing mechanisms for automatically generating 
the rules for determining the color membership of overlapping pixel values. When a 
human trainer labels the colors of pixels within an image, a wealth of contextual 
knowledge and scene understanding affects our interpretation of a pixel’s color. A 
longer term aim is to investigate color training mechanisms that can embed this 
knowledge within the robot. For example, the human trainer compensates for the blue 
discoloration around the edge of the ERS7’s image without conscious effort. Thus we 
are recording features such as the pixel’s location in the image which allow us to 
calculate probabilistic rules for color membership which consider constant distortions 
of the came ra. 
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