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Abstract

This paper examines the related problems
of meaning and symbol grounding with re-
spect to epigenetic robotics. While symbol
grounding aims to give artificial systems “in-
trinsic meaning”, most existing approaches to
symbol grounding address meaning as a prob-
lem of categorical perception, i.e. a theory
of reference for maintaining correspondence
between internal representations and exter-
nal entities at a linguistic level. We argue
that reference is only one aspect of meaning,
and that nonlinguistic and pre-verbal crea-
tures are also meaning users. As such, we
argue meaning plays an important role in an
agent’s value system, providing intrinsic mo-
tivation and reinforcement for life-long devel-
opment and learning. Lastly, we explore how
models of meaning can help shift the intellec-
tual burden of grounding from the program-
mer to the program by designing robots capa-
ble of grounding themselves.

1. Introduction

The founding aim of symbol grounding
(Harnad, 1990) is to “ground” symbols so that
they can be “intrinsically meaningful”; that is, to
create meaning in such a way that the symbols
of a symbol system can be meaningful to the
symbol system, and not just meaningful to the
system designer. To this end, approaches to symbol
grounding have attempted to ground meaning
through categorical perception, by creating and
maintaining internal representations which refer or
correspond to real-world entities. However, there
is no proof that this strategy will produce intrinsic
meaning. This paper argues there is more to a
theory of meaning than reference, and that the way
forward is to examine the evolution of the brain
in order to understand the evolutionary value of
meaning. It is argued modeling intrinsic meaning
requires modeling intrinsic “value systems”, which
can enable an autonomous robot to meaningfully
evaluate novel experiences.

The structure of this paper is as follows: section 2
considers the related concepts of meaning and minds,
briefly reviewing background literature such as the
Chinese Room (Searle, 1980) and symbol ground-
ing (Harnad, 1990), and discusses the difficulty in
proving the existence of either. Section 3 considers
the premise of symbol grounding, that the symbols
of symbol system can be grounded in non-symbols,
and considers whether “non-symbols” need to be
grounded also. Section 4 considers theories of mean-
ing in relation to symbol grounding, noting that most
approaches to symbol grounding involve creating and
maintaining reference (or correspondence) between
an internal model of the world and the world itself.
Section 5 considers how meaning relates to agent’s
value systems. The paper concludes by considering
how to model value systems.

2. Background: Meaning and Minds

“Meaning” is important to human beings. We seek
“meaningful lives”, “meaningful experiences”, while
some things in life mean more to us than others.
Sometimes we even find (supposedly) “meaningless”
things to do, just to pass time and alleviate boredom.
However, despite the obvious importance of meaning
in our lives, understanding what “meaning” exactly
is has proved elusive for philosophers and researchers
throughough the history of science - we can’t even
agree whether meaning is a “thing” in our heads, or
something out there in the world.

As a human being, it is clear to myself that my
thoughts are meaningful to me. It is also clear to
myself that I am a conscious being, with intention
and emotion. Moreover, I also think it is reasonable
to assume that other people’s thoughts are meaning-
ful to them, despite having no method or means to
actually prove it. Likewise, I suspect my dog actu-
ally “thinks”1, and that some things in her life are
more meaningful than others (for example, she def-
initely appears to be “happy” and “excited” when
I get home from work) - but again, unfortunately I
have no way to prove it.

Now, this brings me to my robots. Sometimes

1However, I suspect her thoughts and mental processes are
quite different to mine.



(with the “right” or “appropriate” programming) -
they behave in ways that appear (crudely) intelli-
gent, such as performing tasks, overcoming minor
problems, even learning small things along the way.
The Sony AIBOs in our lab can even play a primitive
version of “fetch” like a real dog, albeit on a much
smaller, poorer and slower scale.

Do these robots have a “mind”? Do they pos-
sess “meaningful thoughts”? As I programmed these
robots, I am convinced they have no meaningful
thoughts, emotions, or intentions - they are mere
computers connected to sensors and motors, blindly
executing my programmatic instructions. Whereas
for other people and other animals I am unable to
prove the existence of their minds, the converse is
indeed true for my robots - that is, I can not prove
these robots do not have a “mind”, regardless of how
simple or well understood their inner workings are.

2.1 Trapped in the Chinese Room

Where does this leave us? The Chinese Room
(Searle, 1980) famously argued that a sophisticated
program, capable of passing a Chinese version of the
Turing Test, would have no understanding of Chi-
nese as it is simply following the instructions con-
tained in a rule-book. To make his point Searle imag-
ined he was the computer. Trapped inside a room,
notes with Chinese characters are passed in through
a small hole to Searle. Searle then diligently uses a
rule-book to find the input characters (based upon
their shape), and then scrawls down the correspond-
ing output set of Chinese characters and passes the
notes back out. To the Chinese observer on the out-
side of the room, it appears the man inside the room
can understand Chinese, but Searle argued the op-
posite is true - he understands nothing of Chinese
(the characters are “meaningless shapes”), as he is
just following the rule-book.

Searle’s simple thought experiment has provoked
enormous debate. Can a computer have a mind?
Can a computer “understand”? What are “mean-
ings”? Where do meanings exist? Searle’s Chinese
Room is an argument against “strong AI” - pro-
ponents of which hold that cognition is computa-
tion, i.e. a mind is the result of the right “pro-
gram”. Searle argues that cognition must involve
more than simply computation (i.e. semantics). As
Searle has no understanding of the notes he is receiv-
ing and passing out, Searle’s view of meaning is that
of semantic internalism - that meanings exist “in the
head” or mind of the meaning user. In contrast, se-
mantic externalism holds that meanings exist in the
world, e.g. see (Putnam, 1973)2.

2For example, the “Twin Earth” thought experiment
(Putnam, 1973) asks us to consider a mirrored, twin earth
somewhere in the universe where everything is exactly the
same, except the chemical composition of water. On each

I can use the Chinese Room argument to support
- but not prove - my belief that my ball-playing AI-
BOs have no mind or meaningful thoughts. How-
ever, a common reply to the Chinese Room argu-
ment is the long-standing “other minds” problem
(Harnad, 1991) - how can I prove that any other liv-
ing entity has a mind? Other people may behave
as if they have a mind, but this is not proof of a
mind3. So, if I can’t prove other people or animals
have minds, how can I prove a robot has or doesn’t
have a mind? Furthermore, if we can’t prove the ex-
istence of human minds, how can we prove or deny
the existence of artificial minds? There is no forsee-
able solution to this dilemma.

2.2 Is escape possible? (via symbol ground-
ing)

Simply put - despite our differing personal intuitions,
hunches and suspicions - we are unable to prove
or disprove the existence of either natural or artifi-
cial minds, yet countless keystrokes have been spent
debating whether a computer can have “conscious-
ness”, “understanding” or a “mind”. Are we wasting
our time? Are we missing the point?

“Symbol grounding” (Harnad, 1990) has offered
hope of escape to many. Motivated by the Chi-
nese Room argument, Harnad likened the symbol
grounding problem to trying to learn Chinese from
a Chinese dictionary alone, where every word is de-
fined in terms of other Chinese words. Thus, with-
out knowledge or experience of any Chinese words,
as each Chinese word is defined in other meaning-
less Chinese words, the task is seemingly impossi-
ble. To avoid this infinite regress, Harnad suggested
that the symbols of a formal symbol system “must
be grounded bottom-up in ‘nonsymbolic’ represen-
tations of two kinds”, namely iconic and categorical
representations. Harnad described iconic represen-
tations as “sensory projections” which structurally
resemble the thing they represent (e.g. the iconic
representation of a horse would be the shape a horse
casts on our retinas), while categorical perception
learns the “invariant features” of sensory projections.

Harnad touted the emerging field of connection-
ism as an ideal candidate for learning the “nonsym-
bolic” representations, thus advocating a hybrid sys-
tem, in which the nonsymbolic iconic and categor-
ical representations would provide an escape from
the infinite regress of the Chinese/Chinese dictionary
(i.e. the formal symbol system). Harnad argued this
approach would provide “intrinsic” meaning to the

world there are two beings, both who possess a concept about
“water”, but because the chemical composition of water is
different on the two earths - and thus the referents of their
respective representations are different - Putnam argued the
meanings of “water” are different, and thus meanings “ain’t
in the head”.

3i.e. they could be “philosophical zombies”.



symbol system, by providing an internal “semantic
interpretation” (or grounding) of the symbols of a
formal symbol system. However, Harnad also hedged
his bets, conceding in conclusion that there is “no
guarantee that our model has captured subjective
meaning”.

A large body of multi-disciplinary research has
been generated by the grounding problem. While
grounding-related research varies in implementation
details and application area, most approaches have
focused on ascribing meaning through categorical
perception of sensorimotor experience. To this end,
numerous types of hybrid systems have been devel-
oped in which different techniques are used for clas-
sification and categorisation of sensory input data.
For example, logic (for high level reasoning) has been
complemented by different methods of categorisation
and classification, such as different neural network
based approaches (Harnad, 1990, Davidsson, 1993,
Nakisa and Plunkett, 1998, Riga et al., 2004,
Law and Mikkaulainen, 1994), genetic and evo-
lutionary algorithms (Swarup et al., 2006), self-
organising maps (Blank et al., 2002), and the
geometric based representations of conceptual
spaces (Gärdenfors, 2000, Chella et al., 2003).

An underlying analogy and assumption behind
these approaches is that the output data produced
by a robot’s sensors is somehow comparable to the
sensations we feel (such as taste, touch, etc) - a form
of “robot functionalism” (Harnad, 1995). In other
words, I know what a pizza means because I know
what it tastes like, smells like, looks like, feels like,
and so forth - and therefore, if we could do the same
for a robotic system (using cameras, taste sensors,
etc), the robotic system’s meaning of pizza would
also be grounded (Mayo, 2003).

Despite the large body of grounding related re-
search generated over the last 20 years, the question
of whether any of these systems capture “intrinsic
meaning” or “subjective meaning” is still unanswer-
able. Has any computational system ever escaped
the Chinese Room? Do any of these systems ex-
hibit understanding? Approaches to symbol ground-
ing have (of course) failed to prove they capture
“subjective” or “intrinsic” meaning - the Chinese
Room argument still applies, regardless of whether
logical formalisms are connected to other forms of
“nonsymbolic” representation. Computers are still
blindly following their underlying programmatic in-
structions, regardless of the higher level formalism
(i.e. the implementation’s conceptual details).

3. Grounding symbols with
nonsymbols?

“The meaning of a representation can be
nothing but a representation. In fact, it

is nothing but the representation itself con-
ceived as stripped of irrelevant clothing. But
this clothing never can be completely stripped
off: it is only changed for something more di-
aphanous. So there is an infinite regression
here” (Peirce, 1935).

Is it possible to give meaning to a “symbol system”
through a “nonsymbol system”? This is the founding
premise of symbol grounding. It raises many ques-
tions. What is a symbol, and what is a symbol sys-
tem, and do other types of representation also need
grounding? What is meaning and why is it impor-
tant? Does “grounding” really give or create “mean-
ing”? A program is just a program, regardless of the
higher-level formalism or conceptualisation.

In defining the symbol grounding problem, Harnad
describes the problem in relation to “symbolic AI”.
However, what is a symbol? A symbol designates
or denotes something else (Newell and Simon, 1976),
while a “representation”, by definition (i.e. to re-
present), stands for something else (the referent). Is
there a difference between a symbol and other non-
symbolic types of representation? Harnad offers a
detailed definition of a symbol system. According to
Harnad, the main difference is the arbitrary nature of
symbols and the non-arbitrary (or causal) nature of
non-symbols. For example, a symbol can be likened
to an arbitrarily assigned label, whereas the nonsym-
bols that (supposedly) ground symbols are causally
related to things they represent. For example, iconic
representations are structurally related to the entity
they represent, e.g. the shape of a horse cast on the
eye’s retina.

Steels (2007) comments the use of the term “sym-
bol” in artificial intelligence has probably created
“the greatest terminological confusion in the history
of science”. Steels argues this confusion arises from
differing uses (or meanings) of the term symbol by
researchers with different backgrounds, i.e. philoso-
phers, linguists and computer scientists use “sym-
bol” in different ways. For example, a computer
programming language is itself symbolic, yet when
a neural network is implemented in a computer lan-
guage using such symbols, the neural network is not
considered by cognitive scientists or philosophers to
be “symbolic” - rather, it is considered to be “sub-
symbolic”. Many years ago Chalmers (1992) made a
similar point:

“In talking about symbol grounding, one must
be careful here not to fall into the old trap
of conflating the two quite separate mean-
ings of ‘symbol’, that is, ‘computational to-
ken’ and ‘representation’. When one argues
that computation consists in the manipula-
tion of meaningless symbols, this is a point
about computational tokens. When one asks



how symbols can be grounded, this is es-
sentially a question about representations.”
(Chalmers, 1992)

Chalmers (1992) is not alone. Sev-
eral other authors (MacLennan, 1993,
Pfeifer and Verschure, 1995, Ziemke, 1999), have
commented that the symbol grounding problem
is not limited to “symbols”, but to represen-
tation in general. For example, MacLennan
(MacLennan, 1993) describes the grounding problem
as “how do representations come to represent”, while
Pfeifer and Verschure (Pfeifer and Verschure, 1995)
describe a “general grounding problem” which
applies to knowledge “structures”, rather than just
“symbols”. Lastly, “theory grounding” describes
how beliefs about the world need to be grounded
through embodied interaction with the world
(Prince, 2001).

The Chinese room argument raises the issue of how
any computational machine can understand or be a
meaning user, as a computational machine will al-
ways follow a set of instructions (i.e. the synactical
rules of the program). If the grounding problem ap-
plies to all computational tokens, how can ground-
ing symbols in non-symbols make symbols intrinsi-
cally meaningful to the program? Symbols in symbol
grounding research usually refer logical propositions
or linguistic expressions that are used for reasoning
about the world. At one extreme, there are some re-
searchers who believe grounding only applies in the
context of communication, e.g. “a symbol is a con-
vention between two (or more) agents. Thus it makes
no sense for a single agent to try to ground sym-
bols” (Swarup et al., 2006). However, the vast ma-
jority of animals are pre-verbal creatures who com-
municate very little. Do they have symbols? There
is evidence that many animals have representations
(Gärdenfors, 2003). Are their representations intrin-
sically meaningful? At the least, they are useful.
Moreover, there are many other ways of reasoning
than by using a formal (logic-based) symbol sys-
tem. In robotics (and software systems in general)
many different types of representation are used for
decision making - databases, classes, variables and
so forth are all used to refer to things in the real
world. Remember - the premise of symbol grounding
is that meaning can be attributed to a symbol sys-
tem through nonsymbols. But if all computational
tokens need grounding, where do we do we get off
the grounding merry-go-round?

4. Grounding and Meaning

4.1 Intrinsic Meaning?
Or a Theory of Reference?

“Symbol grounding is a new name
for an older problem - the problem
of providing a theory of reference for
atomic formulae of a system of internal
representation”(Christiansen and Chater, 1993)

Harnad’s appeal to the Chinese Room and the no-
tion of intrinsic semantics concern philosophical is-
sues such as intentionality, consciousness and mean-
ing. Harnad’s practical solutions (connecting sym-
bols with sensorimotor experience of the real-world
entity referred to by the symbol), however, at-
tack a very different problem - a theory of refer-
ence (Christiansen and Chater, 1993). A theory of
reference (or alternatively “correlational semantics”
(Prem, 1995)) involves relating internal representa-
tions with external entities (e.g. somehow connect-
ing a symbol “John” with the real-world “John”) -
in other words, understanding how the atomic units
of a language come to have meaning.

A large proportion of grounding-related research
treats meaning as a problem of reference. For ex-
ample, symbol grounding has been described as es-
tablishing the “direct correspondence between in-
ternal symbolic data and external real world en-
tities” (Albus and Barbera, 2005); the problem of
how “symbols should acquire their meaning from
reality” (Vogt, 2002), or the association of a sym-
bol “with a pattern of sensory data that is per-
ceived when the entity that the symbol denotes is
seen, or tasted etc” (Mayo, 2003). “Anchoring”
(Coradeschi and Saffiotti, 2000), a variation of the
grounding problem, embraces the problem of refer-
ence for physical objects - anchoring involves “main-
taining the correspondence between symbols and
sensor data that refer to the same physical objects”
(Coradeschi and Saffiotti, 2003).

Much of the emphasis on reference-based mean-
ing in grounding literature may rest with the impor-
tant role it plays in language, as for communication
to occur it is imperative the communication partici-
pants have shared meaning, i.e. that they establish
“common ground” (Clark and Schaefer, 1989). In-
deed, there is even a branch of grounding related
research called “social symbol grounding”, a term
used to describe the formation of shared meanings
through communication (Cangelosi, 2006) - the pro-
cess of multiple agents using the same term to refer
to same real world entity. There have been many
examples of such language-grounding work within
robotics which examine how language may evolve.
For example, the “Talking Heads” experiments
(Steels and Vogt, 1997, Steels and Kaplan, 2002) in-



volved two cameras interacting in a simplified visual
environment which consisted of coloured shapes on
a white board. In these experiments, the agents de-
velop a shared lexicon for the entities in the environ-
ment (i.e. the coloured shapes) through the use of
language games.

Undoubtedly, maintaining a faithful reference be-
tween an agent’s beliefs about the world and the re-
ality of that world is important. Systems from airline
reservation databases to autonomous mobile robots
rely on well grounded representations. For exam-
ple, an airline reservation system must manage in-
formation about flights and passengers in a way that
corresponds to real flights and real passengers. Sim-
ilarly, an autonomous mobile robot that navigates
a physical space will be more effective in achieving
its objectives if its internal representations of physi-
cal barriers correspond to real physical barriers in its
environment. Moreover, different agents “grounded-
ness” (Williams et al., 2005) will vary, i.e. a robot’s
model of the world will invariably have a degree of
error, and the nature of that error can vary. For ex-
ample, a robot soccer player may miscalculate the
distance of the soccer ball from the robot, or alter-
natively fail to “see” the ball entirely.

4.2 More than reference

Ensuring symbols and representations about the
world refer faithfully to that world is an important
aspect of grounding. However, referents aren’t the
sole source of meaning for symbols. For example,
Harnard argues:

“We know since Frege that the thing that a
word refers to (its referent) is not the same
as its meaning. This is most clearly illus-
trated using the proper names of concrete
individuals (but it is also true of names of
kinds of things and of abstract properties):
(1) “Tony Blair,” (2) “the UK’s current prime
minister,” and (3) “Cheri Blair’s husband”
all have the same referent, but not the same
meaning.”(Harnad, 2003)

If we consider linguistic meanings of meaning, ref-
erential meaning (e.g. “I meant that one!”) is just
one component. Other aspects are:

• Understanding (e.g., as in “do you know what I
mean?”). Thus, meaning is often defined circu-
larly as how an event, action, word, etc is under-
stood, and that conversely, to understand some-
thing is to know the meaning of it. For example,
Barsalou(Barsalou et al., 1993) describes mean-
ings as “people’s understandings of words and
other linguistic expressions”. Likewise, it is this
“understanding-based” notion of meaning that is

appealed to by Searle(Searle, 1980) in his Chi-
nese room argument - the man inside the room
does not understand the Chinese symbols, and
thus they are meaningless to him;

• To imply consequence or causation (e.g. “that
alarm means trouble”, “friction means heat”, or
“lower costs mean lower prices”);

• Intention - we use the term “meaning” with re-
gard to discussing intent, design or purpose (e.g.
“I meant 8am - not 8pm!”, “I meant to go swim-
ming this morning, but I overslept”, or “that
building is meant for storage”).

• And lastly, value - the worth, relevance or sig-
nificance of something to the something else (e.g.
“the critic’s opinions meant nothing to the au-
thor” or “her boyfriend meant a lot to her”);

It is this last meaning of meaning - the ability to
qualitatively evaluate the worth or value of things
and experiences - that has been largely ignored in
symbol grounding research. In the following section
the concept of “meaning as value” is explored in fur-
ther detail.

5. The Value of Meaning

If we assume the brain evolved, and our experience
of meaning is a cognitive function, then it follows
that meaning serves to guide an organism’s survival.
While most grounding research has focused on high-
level symbols (such as language), pre-verbal beings
such as animals and children interact meaningfully
with their environment. This meaningful interaction
is the product of internal value systems - mechanisms
for judging and discriminating “good” experiences
versus “bad” experiences. For example, having a full
stomatch is preffered over an empty one; a warm bed
is preferred to a cold one; a state of safety is pre-
ferred to the presence of a predator (Cisek, 1999).
These innate preferences and values provide moti-
vation for behaviour. We search and strive for de-
sirable states, and actively avoid unfavourable ones.
Thus, Cisek (Cisek, 1999) argues computers make
“poor metaphors for brains”, as there is “no no-
tion of desirable input within the computing sys-
tem”, which leads to the “riddle of meaning”. Zlatev
(Zlatev, 2001) describes meaning as a “a relationship
between the individual and the environment, pick-
ing out the categories in the environment which are
of value for the individual”. Likewise, Ziemke and
Sharkey (Ziemke and Sharkey, 2001) compare arti-
ficial systems with living systems, noting one of
the reasons today’s artificial machines lack intrinsic
meaning is due to their lack of an inntrinsic life task.

It has been argued that for any computer or robot
to display intelligence it will require the ability to



evaluate experience in a qualitative manner, and
perhaps even emotion (Sloman and Croucher, 1981).
While emotions may be unneccessary, autonomous
robots will require a value system. Value systems are
often described in the context of developmental and
epigenetic robotics, in which a value system is used
as a source of reinforcement for learning and moti-
vation, signalling the occurrence of salient sensory
inputs and for qualitatively evaluating the effects of
actions.

5.1 Intrinsic Meaning and the
Chinese Room

The Chinese Room argument can be twisted to
demonstrate the point made in the previous section
- that meaning is linked to an agent’s value sys-
tem, which exists to guide exploration and interac-
tion with the world. In Searle’s thought experiment,
everything that happens to Searle is meaningless and
inconsequential. The Chinese symbols are meaning-
less to Searle, not just because of his lack of knowl-
edge of Chinese, but as a result of the lack of any
other salient, significant or relevant events. In re-
ality, why would anyone even bother to follow the
rule-book? As Searle highlights, human beings are
intentional creatures, and would not simply follow a
rule-book unless there was some incentive for doing
so. Human beings are driven by internal, intrinsic
motivators, and rarely (if ever) act without reason.

Now, consider if at some point in time, as Searle
keeps methodically producing his Chinese characters
from his rule-book, some delicious food was suddenly
passed into the room. Immediately, the recent char-
acters output by Searle would have some meaning to
him. If Searle was hungry, it is likely he would try
repeating the previous output characters to discover
if more food arrives in his prison. If this action pro-
duced more food, Searle’s hypothesis that the par-
ticular pattern of characters means “give me food”
would be strengthened. If it didn’t, the hypothesis
would be weakened, and Searle would probably con-
sider other possibilities as to what caused the food
to appear inside the Chinese Room.

Currently, robots are like Searle in the Chinese
Room. Everything that happens to them is mean-
ingless. There is no intrinsic value in their expe-
rience. By endowing robots with (a model of) an
intrinsic value system, novel experiences and interac-
tions with any environment can be evaluated mean-
ingfully. For example, consider current approaches
to machine learning - each learning task is small in
scope. The value judgements are provided by human
supervisors in most cases, and if not, the mechanism
for providing unsupervised reinforcement is carefuly
crafted.

6. Value Systems

Value systems in biological systems mediate envi-
ronmental saliency and modulate learning in a self-
supervised and self-organized manner. In the mam-
malian brain, the output of the neuromodulatory
system acts as a value signal, modulating widely
distributed synaptic changes. Neuromodulators are
chemical transmitters in the brain that can have a
strong and lasting effect on behaviour. The neuro-
modulatory systems include noradrenergic, seroton-
ergic, dopaminergic, and cholinergic projections from
below the cerebral cortex to broad areas of the cen-
tral nervous system, such as the cerebral cortex, hip-
pocampus, basal ganglia, cerebellum and spinal cord
(Lungarella et al., 2003, Cox and Krichmar., 2009).
The importance of the neuromodulatory system
vastly outweighs the proportion of brain space it
occupies (Cox and Krichmar., 2009), as they can
they signal the occurrence of relevant stimuli or
events (e.g. novel stimuli, painful stimuli, re-
wards) by modulating the neural activity and plas-
ticity of a large number of neurons and synapses
(Lungarella et al., 2003). Moreover, biological value
systems act as a probabilistic reward system for re-
inforcing learning and behaviour.

The value system of a developmental/epigenetic
robot is used as a source of intrinsic reinforcement
for learning and motivation, signaling the occurrence
of salient sensory inputs and qualitatively evaluat-
ing the effects of actions (Huang and Weng, 2002,
Lungarella et al., 2003). Value systems not only in-
troduce biases for learning, but also modulate it by
qualitatively evaluating the consequences of particu-
lar action (Lungarella et al., 2003). While the value
systems of a human adult is highly complex due
to a lifetime of social and environmental influences,
in experimental work current approaches to mod-
eling value systems focus on particular aspects of
a value system, such as novelty and curiosity, e.g.
(Huang and Weng, 2002, Oudeyer et al., 2007). In
this way an epigenetic robot is attracted to novel sit-
uations where learning progress can be maximised.

7. Conclusion

While the Chinese Room argues against Strong AI
(i.e. computational intelligence will never have “un-
derstanding”, “intentionality”, or a “mind” in the
deep sense of these words), it does not prove that
building “intelligent” machines is impossible. On the
contrary, the Chinese Room argument highlights one
important aspect that is missing from computational
models of the mind - the lack of value systems for
qualitatively evaluating experience.

Despite symbol grounding being founded on the
idea of ascribing “meaning” to a symbol system, lit-
tle grounding related research addresses models of



meaning per se. Most approaches to symbol ground-
ing focus on meaning as a problem of reference.
While reference is an important aspect of meaning,
other aspects of meaning - most notably “value”
- have been neglected. For example, Ziemke and
Sharkey (2001) consider the “semiotic status” of ar-
tificial organisms, concluding that as artificial organ-
isms “lack an intrinsic ‘life task’ this strongly ques-
tions the idea of ‘first hand semantics’ or ‘content
for the machine’ in todays robotic systems”. Thus,
this paper argues that to build intelligent machines
value systems need to be modelled - a critical aspect
of epigenetic robotics.
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plying jakob von uexküll’s theory of meaning
to adaptive robots and artificial life. Semiotica,
134(1-4):701–746.

Zlatev, J. (2001). A hierarchy of meaning systems
based on value. In LUND UNIVERSITY COG-
NITIVE SCIENCE, page 2001.


