
Grounding Oriented Design

Christopher Stanton

A Thesis submitted for the degree of Doctor of Philosophy

Faculty of Information Technology

University of Technology, Sydney

2007

i

Certificate of Authorship and Originality

I certify that the work in this thesis has not previously been submitted for a degree nor has it

been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research

work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all

information sources and literature used are indicated in the thesis.

Signature of Student

ii

Acknowledgements

A huge “thankyou” goes to my supervisor, Professor Mary-Anne Williams. In late 2001, I was a

disillusioned software engineer, bored with my chosen career path, drifting from one job to the next,

searching for something more, and for some strange reason, I found myself spending my time at work

daydreaming about artificial intelligence (perhaps because I wanted the machines I was programming

to do the work for me). So, I made inquiries at my local university (Newcastle) about the possibility

of undertaking a research honours degree in artificial intelligence. These inquiries led me to Mary-

Anne, and as the cliche goes, the rest is history. Mary-Anne introduced me to robotic soccer, offered

me the opportunity to undertake a PhD at UTS, entrusted with me an important leadership role

(leading the software development for the UTS RoboCup team), allowed me the freedom to pursue

the research areas that interested me, provided me with the opportunity to discuss the grounding

problem with great minds such as John McCarthy and Peter Gärdenfors, and gave me the guidance

to keep me pointed in the right direction. Not only was her guidance and support invaluable, but

she has been a great mentor.

Another huge “thankyou” goes to my parents, Dr John Stanton and Dr Patricia Stanton. My

parents, both academics, have obviously had an enormous influence on my being the person I am

today. Their support, advice, proofreading and love, has been offered, as always, unconditionally.

Table of Contents

Table of Contents iii

Abstract xii

1 Introduction 1
1.1 Motivation . 1
1.2 The Research Problem: Grounding . 3

1.2.1 Grounding for Practical Robotics . 4
1.2.2 Why is grounding important? . 5

1.3 The Need for a Methodology . 6
1.4 Scope . 7
1.5 Thesis Objectives . 8
1.6 Contribution . 8
1.7 Scientific Method . 9
1.8 Thesis Outline . 10

2 Grounding: Approaches and Research Areas 12
2.1 Grounding: What is it? . 12

2.1.1 Layman’s grounding . 13
2.1.2 Searle’s Chinese Room . 13
2.1.3 Harnad’s Symbol Grounding . 14
2.1.4 Brooks’ Physical Grounding . 15
2.1.5 Representation Grounding . 15

2.1.5.1 Analog Computation . 16
2.1.6 Autonomous Grounding . 17
2.1.7 Summary . 17

2.2 Meaning . 18
2.2.1 Grounding and Meaning . 18

2.2.1.1 Internalism vs Externalism . 18
2.2.2 Intrinsic Semantics . 19
2.2.3 A Theory of Reference . 19
2.2.4 More than a theory of reference? . 20
2.2.5 Summary . 21

2.3 Approaches to Grounding . 21
2.3.1 Harnad’s Approach . 22

2.3.1.1 Neural Networks . 23

iii

iv

2.3.2 Categorical Perception . 23
2.3.2.1 Machine Learning . 24
2.3.2.2 Self-Organising Maps . 24
2.3.2.3 Genetic/Evolutionary Algorithms 24
2.3.2.4 Conceptual Spaces . 25

2.3.3 Symbolic Theft and Sensorimotor Toil . 25
2.3.4 Hybrid Systems . 27
2.3.5 Cognitivism versus Behaviourism . 27
2.3.6 Developmental, Learning Systems . 28
2.3.7 Summary . 29

2.4 Grounding Research Areas . 29
2.4.1 Language . 29

2.4.1.1 Natural Language Processing . 30
2.4.1.2 Computational Language Acquisition and Evolution 31
2.4.1.3 Psychological Experiments . 33
2.4.1.4 Establishing “Common Ground” during Communication 33

2.4.2 “Dictionary Grounding” . 34
2.4.3 Anchoring . 34
2.4.4 Vision . 35

2.4.4.1 Pastra’s Double Grounding . 35
2.4.4.2 Image Retrieval and the Semantic Gap 36

2.4.5 Action and Behaviour . 36
2.5 Summary and Conclusion . 37

3 Grounding: A Programmer’s Perspective 38
3.1 A Working Definition . 39

3.1.1 The Process of Embedding . 40
3.1.2 Groundedness . 40

3.2 The Difficulties of Grounding . 41
3.2.1 Representation Design . 42

3.2.1.1 The Relevance Problem . 42
3.2.1.2 The Reference Problem . 43

3.2.2 “Traditional” Software vs Robotics Software 43
3.2.2.1 Perception . 44
3.2.2.2 Action . 45
3.2.2.3 Requirements and Specification . 46
3.2.2.4 Testing and Debugging . 47

3.2.3 Summary . 47
3.3 Towards a General Grounding Solution . 48

3.3.1 Software Development Methodologies . 49
3.3.2 Agent Oriented Software Engineering . 49
3.3.3 Robotics Development Methodologies . 50

3.3.3.1 Brooks’ Subsumption Architecture 50
3.3.3.2 Wasson’s Representation Design Methodology 51
3.3.3.3 Real-time Control Systems Architecture(RCS) 54
3.3.3.4 Behaviour Oriented Design . 56
3.3.3.5 Roy’s Grounding Framework . 57

3.4 Summary and Conclusion . 59

v

4 Grounding Oriented Design:
Introduction and Overview 60
4.1 Motivation and Objectives . 60
4.2 Methodology Scope . 61
4.3 Design Considerations . 61

4.3.1 Grounded Designers . 62
4.3.2 A Software Problem . 62
4.3.3 The Relevance Problem . 62
4.3.4 Problem Decomposition and Decision-Making 62
4.3.5 The Reference Problem . 63
4.3.6 Groundedness . 63
4.3.7 Design Considerations - Summary . 63

4.4 Methodology Overview . 63
4.5 Summary . 65

5 Grounding Oriented Design:
Context-Level Analysis 66
5.1 The Context-Level Skill . 66
5.2 Objectives . 68
5.3 Constraints . 68
5.4 Current Capabilities . 69

5.4.1 The Robot(s) . 69
5.4.2 Software . 70

5.5 Required Capabilities . 71
5.5.1 Separating Requirements and Design . 71
5.5.2 Eliciting Requirements - The Requirements Checklist 73
5.5.3 Requirement Templates . 76

5.6 Conclusion . 78

6 Grounding Oriented Design:
Part I - Basic-Design 79
6.1 Introduction . 79
6.2 Skills . 80
6.3 Skill Collaboration . 80
6.4 Skill Diagrams . 81

6.4.1 Design Considerations . 81
6.4.2 The Basics . 81

6.4.2.1 Skill Naming . 83
6.4.2.2 Numeric Identifiers . 83
6.4.2.3 The Decomposition Box . 84
6.4.2.4 Flow-Of-Control . 84

6.5 The Design Process . 84
6.5.1 The Context-Level Skill . 85

6.5.1.1 Notation: Context-Level Skill . 86
6.5.2 Iterative Skill Decomposition . 86
6.5.3 Identifying Skills . 86

6.5.3.1 Example . 87
6.5.4 Skill Templates . 87

6.5.4.1 Example . 91

vi

6.5.5 Identifying Skill-Transitions . 92
6.5.5.1 What-If Analysis . 92
6.5.5.2 What-If Analysis Checklist . 92
6.5.5.3 Examples . 93
6.5.5.4 Skill-Transitions - Summary . 96

6.5.6 Design: Keeping it Simple . 97
6.5.6.1 Layering . 97
6.5.6.2 Amalgamation . 98

6.6 Summary . 102

7 Grounding Oriented Design:
Part II - Detailed-Design 103
7.1 Detailed-Design . 103
7.2 Skill Types . 104

7.2.1 Decisions . 104
7.2.2 Actions . 104
7.2.3 Perceptions . 105

7.2.3.1 Sensations versus Perceptions . 105
7.2.4 Behaviours . 105

7.3 Knowledge Representation . 106
7.4 Skill Diagrams - Detailed-Design . 106

7.4.1 Flows . 106
7.4.2 Skill Types . 107
7.4.3 Concepts, Percepts and Memories . 107

7.5 The Design Process . 107
7.5.1 Identify Skill Types . 107

7.5.1.1 Guidelines for Identifying Skill Types 110
7.5.1.2 Example . 112

7.5.2 Decompose Transition-Conditions . 112
7.5.2.1 Example . 113

7.5.3 Individual Skill Design . 116
7.5.3.1 Skill Design: Decisions . 116
7.5.3.2 Skill Design: Perceptions . 117
7.5.3.3 Skill Design: Actions and Behaviours 120

7.5.4 Reviewing a Detailed Skill Architecture . 121
7.5.4.1 Design Review Checklist . 123

7.6 Summary . 127

8 Discussion and Conclusion 128
8.1 Go-Design Evaluation . 128

8.1.1 Benefits of Go-Design . 128
8.1.2 Limitations of Go-Design . 130
8.1.3 Comparative Assessment . 131

8.1.3.1 Subsumption Architecture . 131
8.1.3.2 BOD . 132
8.1.3.3 Wasson’s Representation Design Methodology 132
8.1.3.4 RCS . 133
8.1.3.5 Roy’s Grounding Framework . 134

8.2 Future Work . 134

vii

8.2.1 Understanding Decomposition . 134
8.2.2 Go-Design Development Environment . 135
8.2.3 Evaluating Grounding Approaches . 135
8.2.4 Escaping the Chinese Room . 136

8.2.4.1 Understanding Meaning . 136
8.2.4.2 Grounding through Prediction . 137

8.3 Summary and Concluding Comments . 137

A Grounding Oriented Design:
The Step-by-Step Guide 140
A.1 Context-Level . 140

A.1.1 Context-Level: Objectives . 140
A.1.2 Context-Level: Constraints . 140
A.1.3 Context-Level: Current Capabilities . 141

A.1.3.1 The Robot(s) . 141
A.1.3.2 Software . 142

A.1.4 Context-Level: Required Capabilities . 143
A.1.4.1 Requirement Templates . 143
A.1.4.2 Requirements Elicitation Checklist 143

A.2 Basic-Design . 143
A.2.1 Skills . 145
A.2.2 The Basic-Design Process . 145
A.2.3 The Context-Level Skill . 147
A.2.4 Iterative Skill Decomposition . 148

A.2.4.1 Identifying Skills . 148
A.2.4.2 Identifying Skill Transitions . 148

A.2.5 Skill Templates . 149
A.2.6 Design: Keeping it Simple . 150

A.3 Detailed-Design . 150
A.3.1 Skill Types and Knowledge Representation 152
A.3.2 Identify Skill Types . 152

A.3.2.1 Decisions . 152
A.3.2.2 Actions . 152
A.3.2.3 Perceptions . 155
A.3.2.4 Behaviours . 155
A.3.2.5 Guidelines for Identifying Skill Types 155

A.3.3 Decompose Transition-Conditions . 157
A.3.4 Individual Skill Design . 157

A.3.4.1 Skill Design: Decisions . 157
A.3.4.2 Skill Design: Perceptions . 158
A.3.4.3 Skill Design: Actions and Behaviours 159

A.3.5 Reviewing a Detailed Skill Architecture . 159
A.3.5.1 Design Review Checklist . 160

A.4 Detailed-Design Example Diagrams . 161

Bibliography 168

List of Figures

3.1 A representation of a possible subsumption architecture. Each layer represents an en-

capsulated behaviour (with its own sensing and acting), with higher levels possessing

the ability to subsume lower-level behaviours. 51

3.2 A schematic diagram of a subsumption architecture robot capable of “hallway following”[20]. 52

3.3 A decomposition diagram displaying a partial decomposition of the task “walk-the-

dog”[135]. 53

3.4 A flow diagram for the task “walk-the-dog”[135]. 53

3.5 An example of an RCS architecture for controlling an autonomous vehicle. Boxes

marked “SP” perform sensory processing, boxes marked “WM” perform world mod-

eling, and boxes marked “BG” generate behaviours. Diagram taken from[4]. 54

3.6 A “basic reactive plan” for a hungry monkey (p.30 [25]). Statements in brackets, e.g.

“(have hunger)”, are conditions upon which behaviours should be triggered. Thus,

in this diagram if the monkey is hungry, it should get a banana, peel a banana, and

then eat a banana. 56

3.7 A behaviour diagram from BOD (p.27) which represents a monkey that screeches

depending upon who it recognises. Behaviours are represented by rectangular boxes

and internal state is represented underneath the behaviour name. 57

3.8 An example of a “schema for a tangible (touchable, graspable, moveable, visible)

object such as a cup”, taken from Roy’s Grounding Framework[107]. Legend: “Analog

beliefs” are represented by ovals, “categorical beliefs” are represented by rectangles,

“sensor projections” by triangles, and “action projections” by diamonds. 58

5.1 A context-level skill diagram for Play-Soccer . 67

5.2 The raw data for an image (top) is quite meaningless to a human observer, whereas

the corresponding data converted to an RGB image portrays a different picture. . . 72

5.3 Requirements for Movement . 77

viii

ix

6.1 Skill Diagram Legend. 82

6.2 Shopping Skill Diagram. 83

6.3 The diagrammatic notation for representing concurrent skills. Move-Trolley and

Find-Groceries operate concurrently. 85

6.4 A context-level skill diagram for a goal-kicking soccer robot. 86

6.5 A skill sequence for kicking a goal. The skill diagram lacks transition-conditions. . . 88

6.6 An alternate skill diagram for kicking a goal. Find-Ball is now a subskill of Get-Ball.

The skill diagram lacks transition-conditions. 89

6.7 A skill template. 90

6.8 Skill template for Get-Ball . 91

6.9 A skill sequence for kicking a goal with “successful” transition-conditions. 94

6.10 A skill diagram for Kick-Goal with the new “unsuccessful” transition-conditions

unable-to-find-ball and unable-to-find-goal. 94

6.11 A skill diagram for Kick-Goal after the addition of the “unsuccessful” skill-transitions

ball-possession-lost and ball-lost. 95

6.12 Kick-Goal, now with the ability to Get-Up after falling over. 96

6.13 Get-Up separated from Kick-Goal. 97

6.14 Perceive-Posture. 98

6.15 Kick-Ball-At-Goal - now without Get-Up. 99

6.16 Simplified Kick-Ball-At-Goal (top) with Aim-At-Goal and Kick amalgamated into

Aim-And-Kick (bottom). 100

6.17 Further simplified Kick-Ball-At-Goal (top) with Find-Ball and Get-Ball amalga-

mated (bottom). 101

7.1 Flow types in Go-Design. 107

7.2 Overview of skill types in Go-Design. 108

7.3 Knowledge Representation in Go-Design. 109

7.4 Skill types for Kick-Goal. 112

7.5 Detailed-Design for Perceive-Posture. 114

7.6 Pseudocode representing the decision-making for Perceive-Posture. 115

7.7 Detailed skill diagram for Get-Up. 115

7.8 Pseudocode representing the decision-making for Get-Up. 116

7.9 Revised Kick-Goal to incorporate Perceive-Ball operating every processing cycle. 118

7.10 Skill diagram for Perceive-Ball. 119

7.11 Skill diagram for Spin-On-Spot in which there is no obstacle avoidance capability. . 121

x

7.12 Skill diagram for Spin-On-Spot in which the perception of obstacles and the behaviour

to avoid obstacles is incorporated. 122

7.13 Simplified and improved skill diagram for Spin-On-Spot with obstacle avoidance ca-

pabilities. The Spin-On-Spot action is reused from Figure 7.11. 123

7.14 Corrected skill diagram for Spin-On-Spot-And-Avoid-Obstacle, which now chooses

the spin direction for Spin-On-Spot. Figure 7.15 shows the corrected Spin-On-Spot.

Note, the Ball percept is outside the decomposition box to represent the global nature

of this percept. 125

7.15 Corrected Spin-On-Spot, which no longer chooses spin-direction. Rather, this mem-

ory is now set by Spin-On-Spot-And-Avoid-Obstacle, as displayed in Figure 7.14. 126

A.1 Go-Design Requirement Template. 144

A.2 Skill Diagram Legend. 146

A.3 Shopping Skill Diagram. 147

A.4 A context-level skill diagram for a goal-kicking soccer robot. 147

A.5 A skill template. 151

A.6 Overview of skill types in Go-Design. 153

A.7 Knowledge Representation in Go-Design. 154

A.8 Flow types in Go-Design. 154

A.9 Spin-On-Spot-And-Avoid-Obstacle. Note, the Ball percept is outside the decom-

position box to represent the global nature of this percept. 162

A.10 Spin-On-Spot, implemented as an action, not a behaviour. 163

A.11 Detailed skill diagram for Get-Up. 164

A.12 An implementation of the decision Check-For-Timeout. Note, frame-id is outside

the decomposition-box to represent the global nature of this variable. 165

A.13 Detailed-Design for Perceive-Posture. 166

List of Tables

A.1 Requirements Elicitation Checklist . 167

xi

Abstract

The symbol grounding problem[67] is a longstanding, poorly understood issue that has interested

philosophers, computer scientists, and cognitive scientists alike. The grounding problem, in its

various guises, refers to the task of creating meaningful representations for artificial agents. After

more than 15 years of widespread debate and circular introspection of the so-called symbol grounding

problem we seem none-the-wiser as to what constitutes being meaningful, and indeed grounded, for

an agent[127].

We argue, in the context of practical robotics, a grounded agent possesses a representation

which faithfully reflects pertinent aspects of the world. In contrast, an ungrounded agent could be,

for example, delusional or suffering from hallucinations (“false positives”), overly concerned with

irrelevant things (e.g. the frame problem[92]), or incapable of reliably perceiving, recognising or

anticipating relevant things in a timely manner (“false negatives”). While most grounding research

concerns how to develop agents which can autonomously develop their own representations (i.e.

autonomous grounding), the fact all robotic systems are grounded through human design on a

case-by-case, ad-hoc basis has been overlooked. This thesis presents Grounding Oriented Design

- a methodology for designing and grounding the “minds” of robotic agents. Grounding Oriented

Design (or, alternatively Go-Design) is a vital first step towards the development of autonomous

grounding capabilities through improved understanding of the processes by which human designers

ground robot minds.

Grounding Oriented Design offers guidelines and processes for iteratively decomposing a robot

control problem into a set of collaborating skills, together with a notation for representing and doc-

umenting skill designs. Grounding Oriented Design consists of two main phases: basic-design which

involves constructing a skill-architecture, and a detailed-design in which a skill-architecture is used

to design the agent’s representation and decision-making processes. A groundedness framework[142]

is used for describing and assessing the groundedness of either the complete system or of individual

skills. Examples of the methodology’s use and benefits are provided, while suggestions for future

work are discussed.

xii

Chapter 1

Introduction

This section describes:

• The author’s motivation for writing this thesis.

• The research problem the thesis addresses.

• The need for a methodology to address the research problem.

• The scope of the research problem addressed by the thesis.

• The objectives of the thesis.

• The research contribution of the thesis.

• The scientific method employed.

• An outline of the remainder of the thesis.

1.1 Motivation

Motivation for this thesis is driven by two factors: firstly, my interest in the philosophical, theoretical

and long-term issues arising from the grounding problem; and secondly, my experience as not only

a professional software developer, but more importantly, my experience in both developing software

for controlling mobile robots, and managing a team of programmers as the software development

leader of the successful “UTS Unleashed!” robot soccer team1. In RoboCup, a world removed

from the philosophical musings of Searle’s[111] Chinese Room2, the problems we face in grounding

1Information on UTS Unleashed! can be found at http://www.unleashed.it.uts.edu.au/, while information on the
robot soccer competition (RoboCup) can be found at http://www.robocup.org

2For those not familiar with Searle’s Chinese Room thought experiment, it is discussed in Section 2.1.2.

1

2

autonomous mobile robots are very real. Accurately perceiving the robot’s simple “world” is an

enormous challenge. Robots hallucinate (for example, seeing imaginary soccer balls), while some-

times failing to detect a ball which is in the robot’s line of sight. Systems tend to be troublesome

to debug (i.e. to fix), as perceptual input is uncontrolled, always changing, and difficult to exactly

reproduce. Physical actions tend to be clumsy and lacking in dexterity in comparison to those found

in the natural world, with the computer programs usually representing very little about the action

and its consequences - rather, all we usually embed is the procedural knowledge of how to execute it.

This is symptomatic of design in general - the programs know very little of what they are doing, for

instance that “it” (the program and the hardware it is controlling) is even playing soccer. Important

events to us, like scoring a goal, are often not even detected or represented by many systems (and,

perhaps surprisingly, nor are they necessary to play soccer).

I am interested in artificial intelligence, cognitive science, robotics, and robot soccer because, in

the longer term, I hope research in these fields will lead to the development of controllable, intelligent

artifacts. Perhaps naively, I dream of a world in which artificially created machines do all the work

for us, and we can sit around and relax, free to spend our time however we please. In this utopian

world, the machines are called “agents”, and if they are physically embodied “robotic agents”. Agents

operate on their own as if they were a surrogate self, continually making the “right” decisions and

performing the “right” actions, even though they are operating in novel, complex and uncertain

real-world situations. They work without human supervision, and only seek further instruction or

help when it is absolutely necessary. For these agents of the future to become reality rather than

fantasy, they will require a degree of artificial intelligence.

Intelligence, however, has proved very difficult for researchers to define. So far, “human-like”

intelligence has also proved impossible to implement. For artificial agents, their intelligence ulti-

mately rests with the algorithm (i.e. the program) that controls the agent. Such programs interpret

the input from sensors (such as cameras, microphones, buttons, etc), and then (hopefully) activate

the appropriate effectors (for example, motor positions, software commands, etc) which produce

outcomes (e.g. behaviours) which conform to the designer’s expectations. Unfortunately for agent

developers, agents - being at least partially autonomous entities - need control programs that can

respond to future environmental conditions, and thus there is always a degree of uncertainty re-

garding the exact environmental conditions the agent will experience. Herein lies a fundamental

problem for agent developers, as developers must anticipate the agent’s future environmental con-

ditions, and design robust programs which endow the agent with all the “intelligence” to cope with

novel experiences as they arise. The more uncertain the future environmental conditions, the more

difficult the problem. For autonomous robots, operating in the freedom of the real world, the degree

of uncertainty can be very high.

3

Our inability to develop agents which can adapt, as can many biological agents, to changes in

the real world is illustrated by how many of the more famous “successes” of robotics and artificial

intelligence have avoided, rather than deal with, autonomous perception and decision making in

uncertain real-world environments. For example, industrial successes with robotics have generally

been limited to factory automatons, which operate in highly controlled (and thus certain) environ-

ments, performing repetitive procedures with little or no sensing of the environment. Famous robots

that have operated in real-world dynamic environments, such as the Mars Rover explorers3, avoid

the problem through sacrificing autonomy for teleoperation - in other words, humans interpret data

streamed back to Earth by the robot, and then execute many of the difficult or “intelligent” decisions

for the robot by remote-control. Lastly, arguably AI’s most famous single achievement was when a

supercomputer called Deep Blue4 defeated the then reigning chess world champion Garry Kasparov.

However, the chess program operated in a virtual world, had minimal learning capabilities, and

perceptual tasks such as recognising pieces and their locations were handled by a human operator -

the program’s interface to the outside world. The only uncertainties for the chess program (or per-

haps more importantly - for its programmers) are the opponent’s future moves, and in the discrete,

structured world of chess, the short-term possibilities and their consequences can be calculated.

To build robotic agents that operate in uncontrolled, real-world, every-day situations we need to

develop agents that can adapt to changes in the environment in a manner similar to ourselves. In this

thesis I will argue the ability to interpret new experiences meaningfully is crucial to the development

of robust adaptive behaviour - i.e. to enable robotic agents to cope with novel situations for which

have not been explicitly programmed. However, how do we create such a capability? How do we

implement it in a computer program? It is an open problem.

1.2 The Research Problem: Grounding

The term “grounding”, in the context of artificial intelligence, cognitive science, and communication,

is related to the concepts of meaning and understanding. The term grounding has been applied

loosely and generally to many different (but related) topics, such as how words get their meanings[72,

32, 60], how human participants in conversation reach shared meaning and understanding[44, 43],

similarly how participants in human-computer interaction reach shared meaning and understanding

[18, 27], how artificial agents can generate (or evolve) their own meaningful languages[119, 122, 117,

118], how the arbitrary symbols of a computational system become intrinsically meaningful[67, 123,

127], how agents relate beliefs to the external world[107], how to “anchor” internal representations

of physical objects[49], and how designers can create meaningful (“physically grounded”) behaviour
3http://marsrovers.jpl.nasa.gov/home/
4http://www.research.ibm.com/deepblue/

4

for robotic agents[21, 23, 24, 22].

Most of the diverse literature cited above has diverged mainly from two different usages of the

term “grounding” within cognitive science, namely Harnad’s “symbol grounding”[67], and Clark

and Schaefer’s[44] “common ground”. Harnad’s symbol grounding concerns how the symbols of a

symbol system become intrinsically meaningful to the agent manipulating the symbols, with Harnad

likening the problem to the task of trying to learn Chinese from a Chinese dictionary, but with-

out understanding a single word of Chinese to begin with. The task appears impossible, as each

meaningless Chinese word is defined with other meaningless Chinese symbols. Harnad concluded

the meaning of symbols must be grounded in the agent’s experience of the world. Over the last

15 years the symbol grounding problem has been cited by a large body of research which attempts

to find computational mechanisms for modeling and explaining symbol meaning (often linguistic

symbols) through lower-level non-linguistic sensorimotor representations, i.e. by mapping high-level

“symbolic” representations to lower-level, “sub-symbolic” representations of the agent’s experience

in the world. On the other hand, Clark and others[44, 43] used grounding to describe the process

of reaching a state of mutual understanding regarding what is “meant” during communication (to

facilitate collective action)5. This version of grounding, originally defined as a model of communica-

tion between people[44], has been generalised to include different forms of electronic communication

media[43], and more recently in the domain of human-computer-interaction[18, 94].

1.2.1 Grounding for Practical Robotics

Grounding, and its related issues of meaning and understanding, are deeply rooted philosophical

problems, whose implications for robotics are not yet fully comprehended. While philosophical

issues related to grounding are discussed in Chapter 2, our interest is in practical robotics, and

in particular, developing control programs to allow robots to accomplish specific tasks. To avoid

getting “bogged-down” in definitions of grounding that are based on meaning and understanding,

grounding is viewed as:

Grounding is the process of embedding an artifact in an environment to serve a particular

purpose. In the case of robotic agents, it involves enabling that agent to be “in touch”

(colloquially speaking) with the state, and nature, of the environment. Grounding is

related to the process of perception, and involves correctly perceiving, conceiving, and

responding to relevant aspects of the world. Grounding, however, is both task-specific

and “body” specific - different agents, with different sensorimotor capabilities, performing

different tasks in different environments, will need to perceive, conceive, and respond to
5For example, during a conversation listeners may nod their head to signify understanding, while speakers may

repeat or rephrase their utterances.

5

different changes in the world with different levels of accuracy or acceptable error. Thus,

we assume there can be a degree of error between an agent’s beliefs about the world,

and the state of that world (which may also be unknown to us). The term groundedness

is used to describe how well an agent is grounded, with groundedness being graded and

multi-dimensional.

1.2.2 Why is grounding important?

Meaning is important to us - it is clear that our thoughts are about something, i.e. we, the “thought

users”, attribute both meaning and content to our thoughts. The lack of understanding, meaning,

and common-sense reasoning exhibited by computational programs has been one of strongest areas

of criticism directed towards proponents of artificial intelligence [111, 55]. The symbol grounding

problem has been described as one of the major outstanding problems facing artificial intelligence[56].

At a practical level, grounding effects all artificial systems. All artificial systems are grounded

in some way, from pocket calculators to autonomous robots. However, both pocket calculators and

autonomous robots are grounded by their designer - that is, we find meaning and structure in the

world, and write programs to take advantage of it. Most of the intellectual work in AI is done not

by programs but by the program’s writers, and all the work involved in specifying the meanings of

programs is done by people - not programs. Thus, robotic agents are typically grounded through

their designer’s understanding of the problem - i.e. the designer’s understanding of the agent’s

capabilities, the environment in which the agent must operate, and the task the agent must perform

- rather than through any agent-centric understanding of the environment, task, or themselves. The

consequence of this approach is that the knowledge embedded in a program is the designer’s solution

to the current problem, and not the creative ability to solve the next problem that might arise.

Due to the uniqueness of every robot-task-environment relationship, the implementation of robot

control programs is a laborious, ad-hoc process, in which programs are hand-built and rely upon

expert domain knowledge and heuristics. Consequently, program development is highly iterative

and scaling up is difficult.

For robots to respond appropriately to novel and unforseen situations (situations for which they

have not been explicitly programmed), novel situations need to be interpreted meaningfully by the

agent - and not just by the designer a priori. However, even correctly classifying a situation, event

or “thing” as being new or unknown is a difficult task in itself[80]. This “programmer’s dilemma” -

of how to program for an uncertain, changing future - has, over time, led to calls for new approaches

to development, such as behaviour-based robotics and developmental robotics6 - paradigms which

place an emphasis on minimising innate knowledge, while maximizing learning and program plasticity
6These issues are discussed in Chapter 3.

6

during the robot’s operation - the common aim being to write programs that are more adaptable to

change in the world.

The grounding problem arises in any system which relies upon beliefs (however implicit or ex-

plicit) regarding the state, nature or behaviour of the world for the purposes of decision-making.

Thus, there exists a need for a general solution to the grounding problem to replace the ad-hoc,

case-by-case approaches which rely on domain knowledge and heuristics inflexibly embedded in the

program. The lack of a general solution to the grounding problem is evident in our inability to

develop robust robotic agents that can operate in dynamic, complex and uncertain environments

(i.e. the real world). Instead agents are tailored for narrow, specific niche tasks in environments

which are often tailored to assist them (e.g. markings are placed to assist in navigation, or lighting

is controlled to assist with vision processing). Moreover, grounding is important because under-

standing this process will impact not only how we build robots, but also provide insight into how we

find and use “meaning” in the world. A solution would entail a theory of meaning - how to produce

it, how to use it, and what it is. Such a solution will have an impact in many disciplines - ma-

chine “understanding” (or semantics) is at the core of problems such as natural language processing,

computational linguistics, information retrieval, and perception tasks such as computer vision.

1.3 The Need for a Methodology

The grounding problem has generated a large body of research (as we will see in Chapter 2). Most

of this research is driven by the goal of developing autonomous grounding capabilities for agents

- i.e. the ability to perceive, model and represent the world through interactive experience of it.

Grounding is a practical problem with significant implications, yet it is rarely considered by robotics

developers as a problem per se. The fact that all robotic systems are grounded through human design

on a case-by-case, ad-hoc basis has been overlooked. While the ability to develop artificial systems

that can ground themselves is a long-term goal of grounding research, we posit that a stepping-stone

to such a development is an improved understanding of the processes by which human designers

ground robot minds. Therefore, a methodology - being a systematic process - can be an initial step

towards automating a general-purpose grounding process.

There are no methodologies concerned with grounding7, despite the manual creation of repre-

sentation being one of the largest costs associated with deploying robots[135]. As current grounding

approaches tend to be ad-hoc, and reliant upon human knowledge, the success of each project is de-

pendent upon the quality of the programmer and their knowledge of the domain. Methodologies, in
7There are grounding “frameworks”, which are discussed in more detail in Chapter 3.

7

contrast, offer a systematic way of doing things. For example, while software design is a creative pro-

cess, it is not devoid of structure, and software development methodologies are intended to facilitate

systematic development of software, with the aims of minimising risk and improving product quality.

While there are numerous software design methodologies (e.g. Agile[85], Extreme Programming8),

there exist few specialist methodologies for designing software to control autonomous robots (except

for [20, 135, 25]). Software for controlling autonomous robots is posed with unique difficulties (as

opposed to “traditional” software), such as uncertain information (e.g. perception), uncontrolled

and unpredictable environments, and the need for the software program to adapt to and respond

appropriately to unforeseen circumstances. Thus, a grounding methodology, while providing insight

into how the human mind grounds robotic systems, can also be of immediate benefit by improving

the quality of current and newly developed robotic systems.

1.4 Scope

The implications of the grounding problem are wide-ranging - at one extreme they concern philo-

sophical issues such as intentionality and consciousness[111], while at the other we have technical

problems related to the classification and labeling of sensorimotor data[67, 49] which affect our

ability to build artificial perception and language systems. While this thesis does discuss in detail

these wide-ranging issues, the scope of the grounding methodology is software design for controlling

autonomous mobile robots. The problem of building software for controlling autonomous mobile

robots is treated as a technical, engineering problem. We assume software robotic agents are built

for a purpose; i.e. to satisfy a set of requirements. We also assume quality and productivity are

issues of concern (e.g. system verification, error minimisation and detection). The methodology

presents a set of steps to guide the designers of “robot minds” through the problem decomposition

process, together with a modeling notation for representing designs, with the aim of developing

optimal solutions for software control problems. The methodology provides a conceptual means for

modeling robot minds in terms of decisions and the knowledge required to make those decisions, with

a level of detail that makes implementation in in a software programming language straightforward.

Thus, the methodology is concerned purely with software - the methodology does not cover issues

related to robot physical construction, such as hardware selection. Issues related to environmental

tailoring (changing an agent’s environment to help ground that agent) are considered.

8http://www.extremeprogramming.org/

8

1.5 Thesis Objectives

There appears to be no silver bullet for the grounding problem[127, 120], nor does this thesis provide

one. The objectives of this thesis are:

1. To integrate, critique and relate existing grounding literature to the development of algorithms

for controlling ‘everyday’, autonomous robots. The first objective of this thesis is to consider

how the grounding problem effects real-world robotic agents, and why we need to solve this

problem.

2. To develop a framework and methodology for grounding robotic agents. The methodology

should provide a structured process for designing and representing both the decision-making

processes and knowledge required for robot control problems, with the resultant designs being

capable of comparison and straightforward translation into software solutions.

3. To explore how the grounding methodology and framework can be used for designing and

comparing long-term solutions to the autonomous grounding problem (the problem of how to

build artificial systems which can ground themselves).

1.6 Contribution

The major contributions of this thesis are:

1. A critique of existing grounding-related literature, in which implications of grounding with

respect to the design of software for controlling autonomous robots is considered. The critique

argues that there are two main grounding subproblems, namely the problem of relevance

(selecting what to represent), and the problem of reference (maintaining that representation

over time with respect to a changing world). It is also argued that grounding is graded and

multidimensional, and that the dimensions (the different qualities of an agent’s groundedness

that are important) will vary with respect to each task, environment and agent relationship.

2. Grounding Oriented Design (Go-Design) - a grounding methodology to assist with designing

and documenting software for controlling autonomous mobile robots. A diagrammatic nota-

tion is presented for modeling both the decision-making processes and the knowledge upon

which those decisions rely. The notation allows us to model and document grounding “solu-

tions”, independent of an implementation language, but in a sufficiently detailed manner so

that translation to an implementation language is a straightforward process. The diagram-

matic modeling notation is not only capable of efficiently and expressively modeling robot

9

control problems, but also a wide variety of software problems in general. The benefits of

the methodology include improved predictability in terms of deliverables and minimisation of

project risk through the reduction of ad-hoc practices. An example of how to use the grounding

methodology and framework is provided, and the benefits of using the methodology illustrated.

Note - the methodology is not an algorithm for agent software design, and it cannot generate

provably optimal agents.

3. Incorporation into the Go-Design methodology a framework for comparing and evaluating the

groundedness - or quality - of representations. Groundedness, for many practical problems, can

be measured in a straightforward manner. Just as the flights in an airline reservation database

should correspond to real flights, a robot’s beliefs about the state of the world can be verified.

For example, consider, a soccer robot’s representation of a soccer ball - properties of the agent’s

model such as the ball’s distance and location relative to the robot can be empirically measured.

Likewise, representing different aspects of the environment can facilitate different decisions,

and consequently different behaviours. The grounding framework is used in conjunction with

the grounding methodology to specify the required groundedness of systems, and for producing

test-cases.

4. A discussion of new, practical and promising approaches for overcoming the grounding problem,

including the use of ontologies and the semantic web[115].

1.7 Scientific Method

The methodology presented is essentially an engineering tool that draws on research in software

engineering, robotics software development, and knowledge representation. It is an example in

constructionism, a proof of concept, a synthetic methodology in which understanding is gained

through building[100]. The methodology has been refined through stepwise improvements over a

considerable period of time, during which time the methodology was used to not only design systems,

but to also model a wide variety of existing complex robotic systems.

Unfortunately, comprehensively evaluating the “worth” of a methodology using comparative

studies presents time and resource constraints. An ideal way to evaluate a new methodology would

be to run numerous side-by-side trials with different experimental groups, such as developers using

the new methodology (in this case Go-Design), developers using no structured methodology, and

developers using other comparable, existing methodologies. This is obviously beyond the time and

resources available in a PhD program, since the development and testing of the methodology itself

has taken more than three years. So instead, this thesis will:

10

1. Identify the current gaps in software development methodologies for robotic systems.

2. Analyse the grounding problem and its impact on software development for robotic systems.

3. Present the methodology.

4. Provide practical examples of how it can be used to develop effective software solutions for

complex robotic systems.

5. Compare the methodology to existing approaches and identify its advantages over current

techniques.

1.8 Thesis Outline

• Chapter 1 is the current introductory chapter. It introduces the research problem, situates it

with respect to existing research, provides a brief overview of our approach to the problem,

and then details the remainder of the thesis.

• Chapter 2 includes a literature review of the grounding problem, beginning with Searle’s Chi-

nese Room argument[111] and Harnad’s symbol grounding[67], but then detailing subsequent

related research applications (e.g. language grounding and computer vision) and approaches

(e.g. various hybrid approaches in which symbolic systems are integrated with “sub-symbolic”

learning algorithms).

• Chapter 3 considers the practical implications of the grounding problem for the designers of

robot minds - i.e. the “programmer’s perspective” on grounding. Different aspects of the

grounding problem are identified, such as grounding-by-design and autonomous grounding.

• Chapter 4 provides an overview and an introduction to Go-Design, and discusses the method-

ology’s design considerations.

• Chapter 5 presents the first stage of Go-Design - context-level analysis, which concerns under-

standing the nature of the current robot control problem.

• Chapter 6 presents the first step of the methodology’s design process, called “basic design”.

Basic design involves the iterative decomposition of a robot control program into a modular

“skill architecture”.

• Chapter 7 presents the second stage of Go-Design - “detailed-design”. Detailed-design involves

taking a skill architecture, and identifying the representation, decision-making processes and

level of groundedness required to implement each skill.

11

• Chapter 8 provides a discussion and summary of the thesis’s major findings, including limita-

tions of the methodology, while presenting plans for future work.

• Lastly, Appendix A contains a “step-by-step” guide to Go-Design - that is, a summary of the

important steps involved in Go-Design.

Chapter 2

Grounding: Approaches and
Research Areas

The concept of “grounding” in cognitive science is perhaps best described by the philosophical

arguments of Searle’s (1980) “Chinese Room” and Harnard’s (1990) “symbol grounding”. Both are

concerned with the nature of meaning and understanding, and whether machines will ever be capable

of “human-like” understanding (whatever that may be). In this chapter I present an overview of

Searle’s and Harnad’s work, as well as a survey of the subsequent literature which followed. I will

argue that many different attempts to describe or overcome the so-called grounding problem, are

actually attempts to describe or overcome distinct sub-problems of the grounding problem, and

thus a coherent framework for describing how these sub-problems interact is lacking. In doing

so, I will cover some of the “deep” problems, such as meaning, intentionality and understanding,

while describing how grounding literature concerning robotics generally addresses specific, practical

issues concerning problems of sensory interpretation, perception, or just a general (if albeit limited)

“understanding” of the world or some aspect of it.

2.1 Grounding: What is it?

The term “grounding” in the cognitive science, artificial intelligence, and robotics literature is

used in many different but related ways. For example, there is Harnad’s symbol grounding[67],

Brooks’s physical grounding[21, 23, 24, 22], Vogt’s[132] “physical symbol grounding”, representa-

tion grounding[36], theory grounding[103], double grounding[98, 97], human grounding[81], “com-

mon ground” grounding[44, 43]), or grounding with respect to the evolution of languages (e.g.

[116, 117, 122, 118, 121, 119]). When reading these different papers, you inevitably ask yourself a

straightforward question - are these researchers talking about the same thing or different things? Are

12

13

these apparent variations of the grounding problem actually the same problem in different guises?

If not, what are the different problems? In this section we will survey the different interpretations

of grounding1.

2.1.1 Layman’s grounding

In everyday English, to say someone, or something, is (or is not) grounded can have different

meanings. It could mean that a plane can’t take off, or that a child’s parents have confined them to

their bedroom. However, to say a person is not grounded could also mean that their understanding or

beliefs about the world (or a particular topic) are incorrect, irrelevant, or even delusional. In contrast,

a grounded person is indeed the opposite - for example, “the mechanic has a solid grounding with

regards to truck engines” implies the mechanic has either experience, or a thorough understanding,

of the mechanics of truck engines. It is this type of grounding - loosely described as “understanding”

of the world - that we are concerned about in this thesis.

2.1.2 Searle’s Chinese Room

Searle’s[111] Chinese Room is a thought experiment which argues against the possibility of “strong

AI”. According to Searle, supporters of strong AI support the physical symbol system hypothesis

(PSSH). The PSSH, formulated by Newell and Simon[96], states that “a physical symbol system

has the necessary and sufficient means for intelligent action”, implying that computers, when we

provide them with the appropriate symbol-processing programs, will be capable of intelligent ac-

tion. Proponents of strong AI support the idea that cognition is computation, mental states are

computational states, and that a “mind” can be created with the “right” computations, i.e. the

same computations that the human brain performs. Thus, according to supporters of strong AI,

any machine performing the “right” computations will also have a mind.

In Searle’s thought experiment, a version of a Turing Test2 is offered, in which the reader is

asked to consider two different perspectives. Central to this thought experiment is the Chinese

room - a box-like room whose only interface to the outside world is through small slots through

which pieces of paper can be passed to and from the world on the outside of the box. On one

hand, we have a Chinese man outside the room, passing in notes written in Chinese and receiving

sensible, handwritten responses written in Chinese passed back through the slots in the wall. From

the Chinese man’s perspective on the outside of the room, he is having a written conversation with
1For alternative summaries of grounding literature see [133, 127, 144, 123].
2The Turing Test[130] is a famous intelligence test for artificial intelligence. The test involves a “blind” interview

in which the interviewer addresses questions both to a computer and to a human being. If, after a period of time, the
interviewer is unable to distinguish between the human and the machine, the machine is considered “intelligent”.

14

another Chinese person trapped inside the room. In contrast, the reality of the situation is that

there is a man inside the room but he does not know anything at all about Chinese - not a single

word. Instead, the man inside the room is able to follow a procedure (in his native language) in

which he uses the incoming patterns of meaningless symbols (i.e. the Chinese) to find another set of

meaningless symbols. He then writes the new symbols down and passes the note back out, creating

the appearance of being able to understand Chinese, while the reality is quite the opposite.

Searle argued that the man inside the room is in fact like a computer, following a set of rules and

procedures but not understanding or knowing what it is doing. Searle questioned whether a machine

will ever be able to “understand” (and indeed “think”) as does a human being, arguing that machines

will never be capable of human-like intelligence because they lack intentionality and understanding.

However, Searle did not conclude that the creation of intelligent machines is impossible - rather,

that artificial intelligent machines will require the same “causal powers” possessed by human brains.

2.1.3 Harnad’s Symbol Grounding

In 1990, Harnad[67] coined the term “symbol grounding” to describe a problem related to Searle’s

Chinese room[111]. Harnad likens the symbol grounding problem to trying to learn Chinese from a

Chinese dictionary alone, where every word is defined in terms of other Chinese words. Thus, without

any knowledge or experience of Chinese, as each Chinese word is defined in other meaningless words,

the task is seemingly impossible. At some point, Harnad argues, the meaning of at least some words

must be grounded in experience. Harnad defines the symbol grounding problem as:

“How can the semantic interpretation of a formal symbol system be made intrinsic to the

system, rather than just parasitic on the meanings in our heads? How can the meanings

of the meaningless symbol tokens, manipulated solely on the basis of their (arbitrary)

shapes, be grounded in anything but other meaningless symbols?”[67]

Harnad’s concludes that at least some symbols of a symbol system must be directly grounded

through experience, proposing a candidate solution in the same paper, in which neural networks are

suggested as a means of learning the relationships between (arbitrary) symbols and the subsymbolic

(and “invariant”) sensory features to which they relate. Thus, Harnad attempts to solve the ground-

ing problem by finding the patterns of sensory features that correlate to symbols, or vice versa - the

apparent argument being that because the machine’s symbols are “connected” to (or influenced by)

sensory experience the symbols are now (somehow) intrinsically meaningful to the machine.

15

2.1.4 Brooks’ Physical Grounding

“There is an alternative route to Artificial Intelligence that diverges from the directions

pursued under that banner for the last thirty some years. The traditional approach has

emphasized the abstract manipulation of symbols, whose grounding, in physical reality

has rarely been achieved.” (Brooks[21]).

Robotic agents require an appropriate description of how to act in the world - but not necessarily

an explicit description of the world itself. Brooks[21] response to the symbol grounding problem (and

other problems related to traditional AI) was to argue that traditional, explicit symbolic represen-

tation “just gets in the way”. According to Brooks, “the world is its own best model ... the trick

is to sense it appropriately and often enough”. Instead of building top-down models of the world,

Brooks believes that intelligent behaviour can emerge in a bottom-up direction from a collection

of cooperating “behaviours”, with each behaviour tightly coupled to sensors and effectors. Using a

methodology to build, integrate and layer these behaviours, known as the “Subsumption Architec-

ture”3, Brooks described his approach as part of “Nouvelle AI” (or behaviour-based robotics), all of

which is based upon the physical grounding hypothesis.

“Nouvelle AI is based on the physical grounding hypothesis. This hypothesis states that

to build a system that is intelligent it is necessary to have its representations grounded

in the physical world.”

“Only through a physical grounding can any internal symbolic or other system find a

place to bottom out, and give meaning to the processing going on within the system...

The world grounds regress.”[22].

Nouvelle AI emphasised that physically grounded systems require real robots, built bottom up,

so that “high level abstractions have to be made concrete”[21]. The development process involves

the hand-crafting of individual behaviours (i.e. functions, algorithms, etc), with some new, emergent

behaviours arising from the interaction of behaviours. Brooks argues that because of the physical

grounding hypothesis, “traditional symbolic representations” are no longer necessary, and the symbol

grounding problem is avoided.

2.1.5 Representation Grounding

A symbol designates or denotes something else[96], while a “representation”, by definition (i.e.

to re-present), stands for something else (the referent). In defining the symbol grounding prob-

lem, Harnad[67] describes the problem in relation to “symbolic AI”. However, what is a symbol?
3The Subsumption Architecture is discussed in more detail in Section 3.3.3.1

16

Steels[120] comments the use of the term “symbol” in artificial intelligence has probably created

“the greatest terminological confusion in the history of science”. Steels argues this confusion arises

from differing uses (or meanings) of the term symbol by researchers with different backgrounds,

i.e. philosophers, linguists and computer scientists use “symbol” in different ways. For example, a

computer programming language is itself symbolic, yet when a neural network is implemented in a

computer language using such symbols, the neural network is not considered by cognitive scientists

or philosophers to be “symbolic” - rather, it is considered to be “subsymbolic”. Thus, “symbols”

in the context of symbol grounding literature usually refer to logical propositions that are used for

reasoning about the world (e.g. “Sydney is in Australia”, “Australia is in the southern hemisphere”,

so therefore “Sydney is in the southern hemisphere”). However, we take the view that a symbol is

merely a representation (i.e. they stand for something else), and need not be a logical proposition.

For example, other common examples of representation in robotics (and software in general) include

variables, classes, databases, and so forth - i.e. any data structure, internal state or memory. Sev-

eral authors[36, 89, 101, 144] have commented that the symbol grounding problem is not limited to

“symbols”, but to representation in general. For example, MacLennan[89] describes the grounding

problem as “how do representations come to represent”, while Pfeifer and Verschure[101] describe a

“general grounding problem” which applies to knowledge “structures”, rather than just “symbols”.

2.1.5.1 Analog Computation

Harnad frequently makes the distinction between symbolic and analog computation (e.g. [67, 68]).

“By ‘computation’ I mean symbolic computation: the manipulation of physical ‘symbol

tokens’ on the basis of syntactic rules that operate only on the ‘shapes’ of the symbols

(which are arbitrary in relation to what the symbols can be interpreted as meaning), as

in a digital computer or its idealization, a Turing Machine manipulating, say, ‘0’s and

‘1’s. What I will say about symbolic computation does not apply to analog ‘computation’

or to analog systems in general, whose activity is best described as obeying differential

equations rather than implementing symbol manipulations”[68]

The distinction between analog and digital is analogous to the distinction between continuous

and discrete. Input is input is input, whether it be continuous or discrete. Consider the following

practical robotics example: on the Sony AIBO robot some button sensors provide a continuous

analog signal which correlates to the force applied to the button, yet other button sensors on the

same robot only provide a discrete boolean state (i.e. “is pressed” versus “is not pressed”). For

the cognitive agent controlling the AIBO robot, do the representations of analog button presses and

digital button presses need to be grounded any differently? By raising the distinction of analog versus

17

digital computation Harnad is in effect raising a separate issue: the role of discrete or continuous

representational processes in human cognition. MacLennan[89] comments that “grounding is just as

important an issue for continuous (analog) computation as for discrete (digital) computation.”.

2.1.6 Autonomous Grounding

Many researchers believe grounding to be a technical problem which involves connecting symbols

with experience (and vice-versa) autonomously. For example, Prem[102] argues that symbol ground-

ing is “automated model construction”. Likewise, Steels[120] argues if “someone claims that a robot

can deal with grounded symbols we expect that this robot autonomously establishes the semiotic

map that it is going to use to relate symbols with the world”. For Taddeo and Floridi[127] symbol

grounding is the problem of how an artificial agent can “autonomously elaborate its own semantics”

through interacting with its environment4.

2.1.7 Summary

In this section we have seen that the grounding problem concerns how to connect symbols and

representations with the world. In the 1990s symbol grounding could be seen as an attempt to bridge

(or connect) the fields of connectionism with traditional (symbolic) AI. However, there are a range

of different definitions and interpretations of grounding - some which emphasise that the grounding

process must be autonomous, those that emphasise intrinsic meaning (or first-hand semantics), and

those that focus on connecting symbols to categorisations of sensorimotor experience.

At its most philosophical, grounding concerns “deep” questions such as the meaning of meaning,

and whether machines will ever be capable of “meaningful thought” or consciousness in a manner

similar to human cognition (e.g. as in the Chinese room[111]). One aspect of this problem is how to

make symbols meaningful to the symbol user (i.e. a computer program) and not just the designer

- a common view being that this can somehow be achieved (at least in part) by connecting sym-

bolic representations with “subsymbolic” representations of experience (e.g. iconic and categorical

representations). Thus, the symbol grounding problem according to most technical research, con-

cerns how to create and “connect” a “symbolic” representation with categorical representations of

sensorimotor experience, with connectionism being just one option for categorising and classifying

experience.

In the next section we will consider meaning - a term widely used in defining grounding, but

rarely defined or elaborated upon.
4My italics.

18

2.2 Meaning

“The symbol grounding problem concerns how the meanings of the symbols in a system

can be grounded (in something other than just more ungrounded symbols) so they can

have meaning independently of any external interpreter” (Harnad, 1993[68]).

“Grounding does not equal meaning, however, and does not solve any philosophical

problems” (Harnad, 1993[70]).

Harnad’s symbol grounding assumes that for a symbol system to escape the Chinese room

argument[111], some of the symbols of that system must be grounded (i.e. have meaning) in some-

thing other than more ungrounded, meaningless symbols. Harnad concludes that some symbols must

be grounded in subsymbolic, categorical perceptions of reality, offering neural networks as a means

for learning such relationships. In this section we examine the impact of grounding on theories of

meaning, and the implications for autonomous robotics.

2.2.1 Grounding and Meaning

“To ask how a symbol is grounded is to ask how it becomes meaningful” (Glenberg et

al. [59]).

“The meaning of a representation can be nothing but a representation. In fact, it is

nothing but the representation itself conceived as stripped of irrelevant clothing. But

this clothing never can be completely stripped off: it is only changed for something more

diaphanous. So there is an infinite regression here”(Charles Peirce[99]).

Grounding has become synonymous with meaning. However, meaning is a poorly understand

concept that has intrigued philosophers for centuries, as have other fundamental issues related to

cognition and consciousness. What are meanings? Where do they exist? Is grounding really a

process of meaning giving?

2.2.1.1 Internalism vs Externalism

Searle’s Chinese Room is an argument against “strong AI” - proponents of which hold that cognition

is computation, i.e. a mind is the result of the right “program”. Searle argues that cognition must

involve more (i.e. semantics) than simply computation (i.e. syntax), by asking us to consider that

given the right program, Searle himself could appear to be understanding Chinese, but the reality is

in fact the opposite. The Chinese he produces is never translated to English, and thus Searle has no

19

understanding of what he is doing. Searle’s view of meaning is that of semantic internalism - that

meanings exist “in the head” or mind of the meaning user.

In contrast, semantic externalism holds that meanings exist in the world. Putnam’s[104] “Twin

Earth” is a famous thought experiment supporting semantic externalism. The twin earth thought

experiment asks us to consider a mirrored, twin earth somewhere in the universe where everything is

exactly the same, except the chemical composition of water. On each world there are two identical

beings, both who possess a concept about “water”, but because the chemical composition of water is

different on the two earths, Putnam argued the meanings of “water” are different, and thus meanings

“ain’t in the head”.

2.2.2 Intrinsic Semantics

“It is, for example, rather obvious that your thoughts are in fact intrinsic to yourself,

whereas the operation and internal representations of a pocket calculator are extrinsic,

ungrounded and meaningless to the calculator itself, i.e. their meaning is parasitic on

their interpretation through an external observer/user.”[144]

Harnad[67] asks how can the meaning of symbols be not “parasitic on the meanings in our

heads”? For Harnad, the meaning of a symbol system requires more than relations between sym-

bols - a symbol system is meaningless unless at least some symbols are grounded (related to or

connected to) in something “other” than more meaningless symbols. Harnad describes grounding

as a problem of creating “intrinsic meaning”, or what has been called “first-hand semantics”[144].

Similarly, Bickhard[11] describes the problem of “designer semantics” - that the representations of

any computer system (and thus robotic agent) is only meaningful to the designer of the system, and

not the system itself - and the existence of this relationship (the encoding between a representation

and referent by the designer) is not even made aware to the computer system.

2.2.3 A Theory of Reference

“Symbol grounding is a new name for an older problem - the problem of providing a

theory of reference for atomic formulae of a system of internal representation”[42]

Harnad’s appeal to the Chinese Room and the notion of intrinsic semantics concern philosophical

issues such as intentionality, consciousness and meaning. Harnad’s practical solutions (connecting

symbols with sensorimotor experience of the real-world entity referred to by the symbol), however,

attack a very different problem - a theory of reference[42]. A theory of reference (or alternatively

“correlational semantics”[102]) involves relating internal representations with external entities (e.g.

20

somehow connecting a symbol “John” with the real-world “John”) - in other words, understanding

how the atomic units of a language come to have meaning.

A large proportion of grounding-related research treats meaning as a problem of reference. For

example, symbol grounding has been described as establishing the “direct correspondence between

internal symbolic data and external real world entities”[4]; the problem of how “symbols should

acqure their meaning from reality”[132], or the association of a symbol “with a pattern of sen-

sory data that is perceived when the entity that the symbol denotes is seen, or tasted etc”[91].

Anchoring[49], a variation of the grounding problem, embraces the problem of reference - anchoring

involves “maintaining the correspondence between symbols and sensor data that refer to the same

physical objects”[51].

2.2.4 More than a theory of reference?

Harnad, however, acknowledges that referents aren’t the sole source of meaning for symbols. For

example, Harnard argues:

“We know since Frege that the thing that a word refers to (its referent) is not the

same as its meaning. This is most clearly illustrated using the proper names of concrete

individuals (but it is also true of names of kinds of things and of abstract properties): (1)

“Tony Blair,” (2) “the UK’s current prime minister,” and (3) “Cheri Blair’s husband”

all have the same referent, but not the same meaning.”[72]

Harnad’s example illustrates the richness of meaning - meaning for a human being appears to

involve more than simply relating internal symbols with external entities. One aspect of meaning

used in Harnad’s example is emotional or connotative meaning. Roy[107, 108] identifies three im-

portant aspects of meaning in language - emotional, connotative meaning (e.g. “my father gave me

that cup - it has great meaning for me”), functional meaning (e.g. “this coffee is cold” can imply

“get a hot coffee”), and referential meaning (as in a theory of reference, e.g. “I meant that one”).

Cohen et al.[46] argue a representation is meaningful if it not only indicates a condition (i.e. a state)

of the world, but if that indicator serves a functional purpose, such as informing action. Steels[120]

makes the distinction between “m-representations” for human representations (e.g. thoughts, pic-

tures, etc) and “c-representations” for computer-based representations to highlight the gap between

the richness of human meaning, and the reality of representation use in computer-based systems

(e.g. variables).

If we consider linguistic meanings of meaning, referential meaning (e.g. “I meant that one!”) is

just one component. Another aspect is understanding (e.g., as in “do you know what I mean?”).

Thus, meaning is often defined circularly as how an event, action, word, etc is understood, and

21

that conversely, to understand something is to know the meaning of it. For example, Barsalou[10]

describes meanings as “people’s understandings of words and other linguistic expressions”. Likewise,

it is this “understanding-based” notion of meaning that is appealed to by Searle[111] in his Chinese

room argument - the man inside the room does not understand the Chinese symbols, and thus

they are meaningless to him. Other linguistic usages of meaning include to imply consequence or

causation (e.g. “that alarm means trouble”, “friction means heat”, or “lower costs mean lower

prices”); relevance - the worth, value or significance of something to the something else (e.g. “the

critic’s opinions meant nothing to the author” or “her boyfriend meant a lot to her”); and lastly,

intention - we use the term “meaning” with regard to discussing intent, design or purpose (e.g. “I

meant 8am - not 8pm!”, “I meant to go swimming this morning, but I overslept”, or “that building

that is meant for storage”).

2.2.5 Summary

The grounding problem is related to meaning, but meaning is a concept which has troubled philoso-

phers throughout history. Thus, trying to define grounding in terms of meaning is (perhaps) some-

what meaningless. However, two distinct aspects of meaning are appealed to in grounding literature

- firstly, the idea that the grounding problem is the problem of creating intrinsic, first-hand seman-

tics (or meaning) for an artificial computational system; and secondly, referential meaning - that the

grounding problem can (at least partly) be solved by somehow connecting (in the right way) symbols

with sensorimotor data. In the next section we consider in detail the different approaches to ground-

ing, and consider the aspects of meaning they address. We will see that most grounding-related

research, despite appealing to the problem of intrinsic meaning, is empirical and constructionist and

attempts to solve the problem of reference.

2.3 Approaches to Grounding

A large body of multi-disciplinary research has been generated by the grounding problem. While

grounding-related research varies in implementation and application, most approaches have focused

on ascribing meaning through categorical perception. These approaches assume grounding can

be achieved by linking “symbolic” representations to sensorimotor, “subsymbolic” representations

that are “invariantly” correlated (or are “causally” related) with the real-world phenomena being

represented. In other words, I know what a pizza means because I know what it tastes like, smells

like, looks like, feels like, and so forth - and therefore, if we could do the same for a robotic system

(using cameras, taste sensors, etc), the robotic system’s meaning of pizza would also be grounded[91].

The underlying analogy (and assumption) behind these approaches is that the output data

22

produced by a robot’s sensors is somehow comparable to the sensations (and emotions) we feel

(such as taste, touch, happiness, etc) - a form of “robot functionalism”[71]. What usually differs

between approaches are the methods used for categorisation and classification. Neural nets have

been suggested as one means of acquiring such “meanings” (e.g. [67, 105]), as have conceptual

spaces[39], or perceptual features within a logical framework[49]. An inherent assumption in most

approaches to grounding is that intrinsic semantics or meaning can be obtained through categorising

experience. In this section we examine the different approaches to grounding artificial systems.

2.3.1 Harnad’s Approach

In defining the symbol grounding problem, Harnad also offered a candidate solution. Harnad pro-

posed that neural networks could be used to connect symbolic representations to the world, sug-

gesting the use of connectionism for learning perceptual categories. Harnad makes the distinction

between different types of representation. With symbolic representations, the form of the repre-

sentation and form of the represented entity are largely unrelated or arbitrary (e.g. the numeral

“2” and the concept it represents). In contrast, the structure of a subsymbolic representation is

invariantly (causally) related to the entity it depicts (e.g. as in a map). Harnad’s proposal involved

three stages:

1. Iconisation: The process of relating sensory input to subsymbolic, “iconic” representations.

Iconic representations are subsymbolic representations “which are analogs of the proximal

sensory projections of distal objects and events”. In other words, “icons” are representations

which structurally resemble the thing they represent, e.g. in the way a map has a structural

similarity to the part of the world it represents. Harnad uses the following example to illustrate

- “in the case of horses (and vision), they would be analogs of the many shapes that horses cast

on our retinas”[67]. Therefore, iconic representations have features, from which the next step

- categorical perception - can learn the “invariant” features, so as to discriminate and identify

categories of things in the world. Thus, iconic representations are essentially a sensorimotor

stream, faithfully preserving the true “shape” of the world that is experienced by the agent.

2. Categorisation. The process categorising inputs based upon their similarities and differences.

This step is performed by a neural network. Categorical representations are learned and innate

feature detectors that pick out the invariant features of object and event categories from their

iconic representations.

3. Identification. This process uses symbolic, or arbitrary, representations. Identification is the

process of assigning a unique response (that is, a name) to a class of inputs, treating them as

23

equivalent or invariant in some respect. For Harnard, symbolic representation involves symbol

strings describing category membership.

Harnad[67] also goes on to define a process by which new, higher-level symbols can be performed

through the use of elementary (or directly) grounded symbols (i.e. symbols that are immediately

grounded in sensorimotor experience), a process later described as “symbolic theft”[32]. For example,

the concept of a “zebra” could be grounded (without ever experiencing one) by combining the

concepts of “horse” and “stripes”, as long as the symbols “horse” and “stripes” are grounded through

subsymbolic representations (but more about this later in Section 2.3.3).

2.3.1.1 Neural Networks

Harnad’s initial approach was a catalyst for a body of grounding-related research in which neural

networks5 are used. For example, Davidsson[53] argued for the role of machine learning as a “general”

solution for symbol grounding (like Harnad[67]) suggesting that neural networks could enable agents

to learn representations from sensorimotor experience). Some other examples of the use of neural

networks for grounding-related problems include Sales and Evans[110], who ground linguistic symbols

using neural networks. Spiegel and McClaren[114] use machine learning to ground the concepts of

“odd” and “even”. Riga et al.[105] use a hybrid model, consisting of both a self-organising map for

classifying sensory information, together with a supervised neural network for category acquisition.

Cangelosi[28] presents a framework for modeling language in neural networks and agent simulations,

while in other research, Cangelosi et al.[33] use neural networks with autonomous robots to learn

linguistic descriptions of actions and objects.

2.3.2 Categorical Perception

“Neural nets may be one way to ground the names of concrete objects and events in

the capacity to categorize them (by learning the invariants in their sensorimotor pro-

jections)... If neural nets turn out to be unable to do this job, other pattern learning

mechanisms might still succeed”(Harnad[70])

A common theme in grounding literature is the meaning of representations is (at least partly) due

to them being “connected” (in the right way) to the categorisation of sensorimotor experience[73].

Categorisation appears to be a key aspect of cognition - people form categories of many different kinds

every day; examples include “cars”, “people”, “foods you refrigerate”, “things to take to university”

and so on. There are even categories of categories - for example, Barsalou[8] defines three types of

5The term “neural networks” (or connectionism) refer to neuron-based models of the human brain capable which
are capable of learning.

24

categories that occur in everyday cognition - ad-hoc, explicit definition, and no explicit definition.

Examples of ad-hoc categories are “birthday presents for your mother”, or “things to take on a

camping trip”. Explicit definition categories have precise rules for inclusion. For instance, a triangle

is a closed figure having three straight lines for sides and three angles whose sum is 180 degrees. In

contrast, no explicit definition categories, as their name suggests, have no known explicit rule for

category membership. Instead, members of this category have some associated properties that are

generally true, but no universally so, of their items. An example of a no explicit definition category

could be “sport”. For instance, while sport generally implies physical activity and competition,

many people would argue over whether activities such as chess, snooker or synchronised swimming

should be classified as sport.

2.3.2.1 Machine Learning

Harnad[70] suggests that neural networks are just one type of machine learning algorithm that may

capable of learning patterns in sensorimotor data, and thus forming categories of “experience”.

Other learning techniques that may be capable of the “how” of categorisation include self-organising

maps[83], genetic algorithms[93], and geometric-based techniques such as conceptual spaces[57]. In

the following subsections these machine learning techniques are briefly discussed. Those readers

familiar with such techniques may wish to skip to Section 2.3.3.

2.3.2.2 Self-Organising Maps

Self-organising maps[83] (SOMs) involve a mapping of a high-dimensional input vector to a cell in

a low-dimensional matrix based upon similarity measures of the input vectors with a model vector

associated with each cell, thus the resultant matrix is organised (i.e. categorised) based upon the

similarity (or conversely differences) of input vectors. Examples of SOMs use in grounding-related

research include Blank et al.[13] who suggest how SOMs can be used for the life-long learning of an

artificial agent, and Riga et al.[105] who use a self-organising map for classifying sensory information.

2.3.2.3 Genetic/Evolutionary Algorithms

Genetic algorithms are a type of learning algorithm inspired by evolutionary and genetic processes,

using techniques such as mutation, inheritance, selection, and recombination (or crossover)[93]. Such

algorithms typically involve the production of new generations of individuals within a population

by combining or mutating the attributes of “fit” individuals, thus (hopefully) moving towards an

optimal solution. In grounding research which utilises genetic algorithms, Swarup et al.[126] present

a system in which agents learn ontologies to solve multiple tasks by using genetic algorithms to

25

improve a particular representation structure known as “frequent subgraphs”. The authors claim

their approach is more flexible than compared to the use of neural networks. Other researchers have

used genetic algorithms to train neural networks. For example, Law[86] has conducted research to

develop grounded behaviours in which genetic algorithms evolved neural networks to produce wall

following behaviour, while Nakisa and Plunkett[95] use genetic algorithms to train neural networks

to learn representations for recognising speech sounds.

2.3.2.4 Conceptual Spaces

Gardendfors’ “conceptual spaces”[57] is a theoretical framework for modeling concepts and, in partic-

ular, provides methods for modeling categorisation and similarity. Conceptual spaces model concepts

using spatial and geometrical representations of cognitive dimensions such as colour, shape, pitch,

and so forth. For example, sound perception could be represented by a two dimensional space, using

the dimensions of pitch and volume. Points in a space can represent instances, while regions can

represent categories. Common clustering techniques can be used to form and modify categories,

while different distance metrics can be used for modelling similarity. As a conceptual space rep-

resents qualities of the environment independently of any linguistic formalism, it can be thought

of as occurring prior to symbolic representation. Gärdenfors argues that symbolic, associationist,

and conceptual levels of representation are all required for the construction of artificial agents, with

conceptual spaces offering a bridge between the symbolic and connectionist modes of representation.

This intermediate representation is likened to a bridge between subconceptual knowledge (where

knowledge is yet to be categorised) and symbolically organised knowledge.

Chella et al.[38, 40, 39, 37] have applied conceptual spaces to the grounding problem6. For

example, conceptual spaces have been used as a means of enabling robotic agents to understand

visual scenes [38, 39], or to explore the “learning by imitation” development paradigm[37] (i.e.

robots can learn new actions or movements by observing a teacher performing the action), which is

achieved by modeling an action space. Lastly, Roy[106] suggests how conceptual spaces can provide

a means to model context sensitivity in natural language processing.

2.3.3 Symbolic Theft and Sensorimotor Toil

An obvious criticism of the hypothesis that meaning is related to categorical perception is how do we

explain for entities that can never be perceived because they are imagined[42], detached[58], or never

existed? Harnad’s reply[70] to such criticism focuses on a “peekaboo unicorn”, a horse with a horn

which vanishes without a trace before any entity with a grounding capability can ever perceive or
6Note - much of this work falls under the category of “anchoring” - a specialisation of the grounding problem which

we will discuss in Section 2.4.3.

26

detect it (through either their senses or the use of other measuring instruments). Thus, unverifiable

in principle, Harnad argues a concept of the peekaboo unicorn can be grounded, as long as (at least

some) symbols used to describe it are grounded. This process of giving a “non-perceivable” concept

such as the “peekaboo unicorn” meaning has been described as the symbolic theft [30, 32, 31] of

meaning from elementary symbols[67, 70].

Given the role that categorical perception plays in cognition, it is a common argument that sym-

bolic representations must be grounded bottom-up using categorical representations (for example

[67, 70, 32, 31, 72]). By building categories that filter features of iconic representations, within cate-

gory differences compress, while between-category similarity distances expand, allowing for reliable

classification of category membership. The use of categories restricts the grounding problem to a

set of elementary symbols, where each of these elementary symbols has a corresponding real-world

object, event or relation[31]. The process involved in grounding elementary symbols in sensorimotor

experience is described as sensorimotor toil [30, 32, 31, 35].

Cangelosi and Harnard[32] extend Harnard’s original candidate grounding solution by introducing

a new tier composed of complex symbols, formed from the symbolic theft of meaning from elementary

symbols (e.g. the term “zebra” could be described in terms of “horse + stripes”, with the terms

“horse” and “stripes” being directly grounded, elementary symbols). Thus, with Cangelosi and

Harnad’s approach there are now four stages or representation processing:

1. Sensory data is converted to iconic representations.

2. Categorical representations are formed from iconic representations.

3. Elementary symbols are “connected” (or directly grounded) to categorical representations.

4. Lastly, complex symbols are formed from manipulation of other elementary or complex sym-

bols.

While the theory of symbolic theft provides a plausible explanation for the grounding of abstract

concepts, many questions are raised. For example, at what point is a symbol system grounded?

What balance between directly-grounded elementary symbols and complex symbols (formed through

symbolic theft) must there be? If we liken it to Harnad’s[67] problem of trying to learning Chinese

from a Chinese dictionary alone, is our understanding of Chinese grounded if we know a few words

of Chinese to begin with, and thus use only a few Chinese words to ground all the new Chinese we

learn?

27

2.3.4 Hybrid Systems

Harnad[70] uses the “peekaboo unicorn” example as evidence as to why a neural network alone

is not likely to be enough for grounding, as he argues there has to be a symbolic level at which

the higher-order categories formed out of propositional strings are represented. Therefore, Harnad

argues that a grounding process must require both a symbolic component, and a component capa-

ble of learning the categorical representations of sensory invariants. In the relatively short history

of AI two competing paradigms - connectionism and symbolic AI (symbolicism) - have both jos-

tled for attention and argued over which is the more appropriate paradigm for mind-modeling and

implementing intelligence[90]. Hybrid systems are strategies which combine neural networks with

symbolic models such as expert systems, decision-trees, or case-based reasoning[125]7. The motiva-

tion for the hybridisation of connectionism and symbolic AI is based on the assumption that while

the technologies are different, they are also complementary. Symbolic AI is more transparent8, eas-

ily semantically interpreted, and provides a high-level of problem abstraction, thus simplifying the

process of encoding expert knowledge and decision-making rules. On the other hand, connectionist

models show advantages with regard to learning capabilities[63].

Harnad’s[67] hybrid system approach to the grounding problem is not alone. Cangeosi and

others[35, 33] use a supervised neural network together with a symbolic system to enable robots to

learn the names of actions through demonstration. Davidsson[53] uses neural networks to connect

computer vision representations with sensory data. Greco et al.[65] use neural nets to categorize and

name images of shapes, such as circles, ellipses, and squares. Sun[124] has developed CLARION, a

cognitive architecture which focuses on bottom-up learning coupled to symbolic reasoning.

2.3.5 Cognitivism versus Behaviourism

As Harnad’s[67] proposal that symbols must be grounded through experience was gaining momen-

tum, concurrently in the 1990s the notions of embodiment, agent-environment interaction and situat-

edness began to receive more attention [1, 2, 21, 23, 24, 22, 6]. Appealing to notions of embodiment,

situatedness and agent-environment interaction is a common argument used to deflect awkward

questions related to how symbols and representations acquire meaning[54, 123, 41, 91, 5, 112, 15].

Proponents of embodiment agree that the symbols of a disembodied symbol system lack intention-

ality, with the meaningfulness of symbol systems derived through the human designer. However,

proponents of emobodiment argue an agent can be grounded through sensory-motor interaction with

the environment - as opposed to passively experiencing it.

Ziemke[144], in a literature review, describes approaches to grounding as subscribing to either the

7In contrast, unified strategies aim at developing symbolic capabilities using neural networks alone[125].
8A quality helpful with debugging (program fixing).

28

“cognitivist” or “enaction” paradigms of cognitive science. Cognitivists are described as supporting

the slogan “cognition is computation”, while “enactivists” emphasise embodiment, action, and dis-

tributed intelligence. Cognitivists attack the grounding problem in a way similar to that suggested

by Harnad[67], by trying to establish “causal” connections between internal representations and

external entities or object categories through “invariants” in sensorimotor data. Ziemke[144] states

that while the cognitivist approach supports the idea of interaction with the environment (in prin-

ciple), much of this research only attempts to ground representations in sensory invariants alone,

thus neglecting much of what it means to be embodied. In contrast, the “enactivism” paradigm

stresses “siuatedness” and “embeddedness”, and views grounding not purely in a symbolic-sense,

but also in a behavioural-sense, e.g. as in the physical grounding hypothesis[21]. That is, as enac-

tivists are committed to agent-environment interaction, the grounding problem becomes a problem

of finding the right “function” for that agent, task and environment. Consequently, enactivists view

grounding as a system-level process - that is, grounding an agent involves finding the “right” control

program or function that produces the “right” (i.e. “meaningful”) behaviours, whereas cognitivists

treat grounding as problem of making representations9 meaningful. As Ziemke[144] points out, if

we adopt the enactivist/behaviourist view of grounding, where does grounding start and end?

2.3.6 Developmental, Learning Systems

Another common way to claim that symbols are grounded, or more precisely intrinsically meaningful

to a robot, is to say that a robot learned the meaning of symbols or representation through experi-

ence of (or interaction with) the world[13, 14, 45, 137]. A relatively new paradigm, developmental

robotics[13, 35, 139, 137, 138] (or cognitive developmental robotics), is an approach to developing in-

telligence which emphasises lifelong learning and the modeling of human cognitive development. The

aim of developmental robotics is to create artificial intelligences which exhibit autonomous mental

development, in the same way human cognitive and behavioural development occurs through in-

fancy to adulthood. Much of the practical motivations behind developmental robotics is to develop

robots capable of learning new tasks that a human programmer does not anticipate at the time of

programming.

One of the leading proponents of developmental robotics is Weng[137, 138, 139]. Weng argues

autonomous mental development can relieve programmers from the burden of designing a robot’s

representation and control structures. One of Weng’s robotic projects is called SAIL (Self-organizing

Autonomous Incremental Learner). The goal of the SAIL developmental robot is to automatically

generate representations and architectures. SAIL is capable of exploring the world on its own,

building representations and categorisations by automatically deriving discriminating features, while
9Especially “symbolic” representations.

29

SAIL’s learning process can be guided by human instruction and reinforcement by pressing a “good”

button or “bad” button on the robot. Other examples of developmental robotics include the “robot

baby” project[46, 45], which is an effort to model cognitive development on a robot platform, and

that of Blank et al.[12, 13, 14] whose goal is to create robots that can discover concepts autonomously.

2.3.7 Summary

In this section different approaches to the grounding problem have been presented. All are con-

cerned with how to make representation meaningful, though what constitutes representation and

meaning is different under each approach. Hybrid systems ascribe meaning to a high-level symbolic

reasoning system by connecting the symbol system to machine learning algorithms capable of form-

ing categorical (subsymbolic) representations of sensorimotor data. In such systems, the process of

symbolic theft can enable the construction of new concepts, including those that are abstract or

imagined. Behaviourist approaches treat the grounding problem as a practical problem of finding

the right “function” to control a robot’s behaviour, and thus the representation being grounded is

the entire control program itself. Lastly, developmental robotics embraces a life-long learning ap-

proach to robot development, and proponents of this approach argue that if a robot learns its own

representations then such representations are grounded.

In the next section we will turn our attention to specific grounding areas, such as natural language

processing, computer vision, information retrieval, and the semantic web. It is argued the grounding

problem is a wide-ranging problem for which a general solution may have far-reaching consequences.

2.4 Grounding Research Areas

Grounding is a far-reaching, multi-disciplinary problem. In this section we consider different research

and application areas relevant to the grounding problem, such as computer vision, language, the

semantic web, information retrieval, and the general problem of robotic system development. We

begin by discussing language.

2.4.1 Language

There is a large body of grounding-related research concerning language. Most grounding-related

research in computational linguistics falls into the following categories:

• Understanding natural language - the task of creating machines that can understand human

languages, either written or spoken.

30

• Evolutionary computational linguistics - an area of research which uses computation linguistics

to not only help improve our understanding of the origins of language, but to also see how

collections of robotic agents can develop their own languages.

• Psychological experiments with human subjects, which examine the role of perception, action

and embodiment in grounding language.

• The process of establishing “common ground” (i.e. shared or mutual understanding) during

communication between agents.

• So called “non-grounded” approaches[108], in which linguistic meaning is modeled as structural

relations between symbols.

In the following subsections we will discuss each research area.

2.4.1.1 Natural Language Processing

Natural language processing (NLP) is an area of research devoted to developing techniques which

allow machines to “understand” different forms of natural10 language, such as spoken or typed

utterances, documents, and so forth[79]. Due to NLP’s concern with understanding the meaning of

language, it can be argued that all aspects of NLP are affected by the grounding problem. In the

longer term, solutions to NLP may be of benefit in the following areas:

• Man-machine communication and interaction. Rather than having to use graphical or text-

based interfaces (e.g. complex commands or programming languages), a person may be able

to simply tell the machine what they want it to do.

• Knowledge acquisition. If machines could understand text and speech, they could read books

and newspapers, or even listen to the radio.

• Information retrieval, which involves finding relevant articles from a large database. Thus if a

machine truly “understands” not only the user’s query, but also the content of the documents

in the database, all relevant articles should be found.

• The facilitation of automatic translation, enabling speakers of different languages to commu-

nicate seamlessly without the need for a human translator.

There are two main approaches to natural language processing - grounded approaches and “un-

grounded” approaches[109, 108, 133]. Grounded approaches model meaning by connecting language

10“Natural” languages are those that people speak (e.g. English, Chinese or Swahili), as opposed to “artificial”
languages, such as programming languages or logic.

31

with perception and action, while so-called ungrounded approaches model meaning as structural

relations between symbols (i.e. as per a dictionary). Regardless of whether the system is grounded

or ungrounded, there are two distinct processes in language processing:

1. Processing (or translating) a text-based representation of a sentence (or sentences) into a

representation which conveys the meaning of the text. This task requires syntactic parsing

to determine the structure of the sentences being analysed, after which semantic analysis is

performed.

2. Processing spoken language, which requires the conversion of spoken language into a text-based

representation which can then be processed as per Step 1. Thus, this step requires additional

knowledge about phonology and signal processing, and is faced with the the further difficulties

of coping with the ambiguities that arise in speech.

Grounding-related approaches to NLP generally focus on connecting the NLP system of an

embodied agent (i.e. a robot, simulated or physically embodied) to the world through the sensory

and perceptual data of that robot - the assumption being that without such a connection to the world,

a “deep” understanding of language by an artificial system is not possible. For example, Roy[107]

describes “ungrounded” approaches to NLP as being trapped in “sensory deprivation tanks”, where

all meanings bottom out in “symbolic descriptions of the world as conceived by human designers”.

Roy and his associates at the Cognitive Machines research project at MIT11 have been developing

grounded approaches to NLP, with their long-term aim being the development of conversational

robots. Much of their work uses machine learning techniques to connect and learn the relationships

between symbols and sensorimotor data. For example, Gorniak and Roy[64] use a probabilistic model

to disambiguate multiple hypotheses of perceived speech (but in a contrived micro world). The

model incorporates a Hidden Markov Model12 based speech recogniser (for perceiving utterances),

together with a probabilistic grammar parser (which determines the most likely utterances based

upon grammatical rules).

2.4.1.2 Computational Language Acquisition and Evolution

Computational language acquisition and evolution is concerned with using computational algorithms

to understand the origins of language - that is, how languages have evolved over time among collec-

tions of agents (including people). The term “social symbol grounding” has been coined to describe

the collective negotiation that occurs in mulit-agent systems that develop a shared lexicon[29, 134].

11http://www.media.mit.edu/cogmac/
12A Hidden Markov Model is a statistical model in which the system being modeled has unknown parameters, and

the challenge is to determine the hidden parameters from the observable parameters. The extracted model parameters
can then be used to perform further analysis, for example for pattern recognition applications.

32

The objective of research into computational approaches to language evolution (also called “evolu-

tionary computational linguistics”) is to define computational models of how communities of agents

(either simulated or robotic) can develop (i.e. evolve) shared grounded communication systems.

Proponents of such research believe that communication abilities should be learned autonomously,

rather than programmed by a human designer. For example, Steels[119] argues that an improved un-

derstanding of evolutionary computational linguistics has potential benefits in the domains of both

human-to-robot and robot-to-robot communication, while also providing insight to those disciplines

concerned with the origins of language and communication.

Generally, studies in evolutionary computational linguistics involve a multi-agent system which

learns a communication system (of reduced complexity compared to natural language) which allows

the system to refer to common environmental entities or phenomena using mutually understood signs

or symbols (for literature overviews see [19, 34, 82, 133]), and thus are subject to the grounding

problem. The computational techniques used in language evolution studies, like other grounding

research, rely on methods of categorisation (such as pattern recognition and neural networks) to

allow the agents or robots to differentiate and recognise different experiences. While neural networks

are the most common approach and have proven relatively successful, it has been noted that the

use of neural networks makes analysis of the category membership rules more difficult and less

transparent[133].

A common technique to facilitate learning in this area of research is to use language or discrimina-

tion games - a famous example of which are the “Talking Heads” experiments (e.g. [122, 118, 121]).

The Talking Heads experiments involved two cameras interacting in a simplified visual environment,

which consisted of coloured shapes on a white board. In these experiments, the agents develop

a shared lexicon for the entities in the environment (i.e. the coloured shapes) through the use

of language games. The language games involve two agents associating arbitrarily constructed la-

bels with particular environmental entities by playing variants of a “guessing-game” (i.e. “tell me

the name of this object”) with each other. Extensions of the talking heads experiment included

the use of simulated or real robotic agents and the nature of the sensorimotor experiences to be

categorised[7, 131, 133]. With these “embodied” experiments, the agents aim (through a series of

discrimination games) to distinctly categorise sensorimotor experiences, allowing agents to construct

repertoires of categories from scratch. While the Talking Heads experiments (and their variations)

have shown that it is possible for agents to construct their own symbols from perceptual input, the

experimental scenarios are highly structured and removed from the environments in which a mobile

robot may expect to operate (such as the real world).

33

2.4.1.3 Psychological Experiments

There have been a number of psychological-based empirical investigations which have shown a strong

interdependence between language development and embodiment factors, such as the relationship

between language grounding and perception[9, 52], and the relationship between language grounding

and action[60]. Many of these experiments are based upon asking subjects to perform language tasks

regarding perception and action, in which priming effects (i.e. quicker response times) are uncovered

when both the language phrases presented in the task and the bodily experience required to complete

the task are “consistent”. For example, Glenberg and Kaschak[60] asked participants to judge the

sensibility of sentences such as “You gave Andy the pizza”, “Andy gave you the pizza”, or “open the

drawer”. The subject’s response was recorded by pressing a “yes” button - however, the location

of the “yes” button would be varied so as to either require a movement toward the subject’s body

or away from the subject’s body. Responses were faster when the action was consistent with the

action implied by the sentence. Glenberg et al.[59] argue that such priming effects are evidence that

language is grounded outside of the language system through perception and action. Glenberg and

Robertson[61, 62] propose the “Indexical Hypothesis” (IH), which states that meaning is based on

action and affordances, and furthermore, that language is made meaningful by cognitively simulating

the actions implied by sentences. According to the IH, three processes transform words and syntax

into an action-based meaning:

1. Words and phrases are indexed or mapped to non-arbitrary perceptual symbols[9], which “are

based on the brain states underlying the perception of the referent”[60].

2. Affordances are derived from the perceptual symbols (however, Glenberg and Robertson’s[61,

62] account of how such affordances is derived is not clear).

3. Lastly, the “sensibility” of the cognitive simulations stimulated by language are constructed

in terms of action from the syntactic constructions of sentences.

Thus, in short, the IH proposes that language is made meaningful by cognitively simulating the

actions implied by sentences.

2.4.1.4 Establishing “Common Ground” during Communication

Clark and Schaefer[44] refer to a very different notion of “grounding” - finding common ground

in communication and discourse. An example of finding common ground in language use is how

speakers acknowledge and repeat or rephrase speech to provide feedback to each other. Speakers

look for signs of understanding from their listeners, often repeating themselves if listeners do not

provide adequate feedback of attention. Poor grounding results in communication failure, and in

34

order to avoid miscommunication participants in dialogue continuously attempt to align their mutual

knowledge. While initially concerned with human communication, research in “common ground”

grounding has been extended to include computational theories[129] and the domain of human-

computer interaction[94]. For robots to interact with us in this world we will need a shared grounding

- for example, if I ask a robot to get a specific object, the robot’s representation should be concerned

with the same real-world entity as myself. Thus, as research in general-purpose robotics progresses,

the relevance of “common ground” grounding will become increasingly relevant.

2.4.2 “Dictionary Grounding”

In contrast to grounding through embodiment and experience, the opposing hypothesis is that a sym-

bol’s meaning is in fact defined by other symbols - as per a dictionary. While such approaches may

seem counter-intuitive in light of Searle’s Chinese Room[111] and Harnad’s symbol grounding[67]

arguments (and have also been labeled as “ungrounded”[109, 108, 133]), there are many examples

of this approach. Perhaps the most well known is CYC[87], an ongoing project which represents

semantic knowledge in a massive logical database, that aims to (hopefully) enable commonsense rea-

soning through the sheer bulk of represented knowledge. Collins and Loftus[47] propose conceptual

information arises from the pattern of relations among nodes in a network, with meaning arising

through the pattern of interconnections between nodes. For example, every node corresponds to an

undefined word, and the set of nodes to which a particular node is connected corresponds to the

words in the dictionary definition. Others, such as HAL[26] (Hyperspace Analogue to Language) and

LSA[84] (Latent Semantic Analysis) take advantage of high-dimensional vectorial algebraic models

to model meaning based upon word co-occurrences in massive amounts of data. For example, with

HAL the meaning of a word is represented as a vector in a multi-dimensional space based upon

140,000 word-word correlations. Similarly, with LSA the meaning of a word is its vector represen-

tation in a space with hundreds of dimensions. For a comparison of grounded versus ungrounded

approaches see[59].

2.4.3 Anchoring

A relatively recently identified special case (or subproblem) of the symbol grounding problem is

anchoring[49]. Anchoring involves maintaining the link between an agent’s internal symbols and the

physical objects represented by the symbols.

“We call anchoring the process of creating and maintaining the correspondence between

symbols and sensor data that refer to the same physical objects. The anchoring problem

is the problem of how to perform anchoring in an artificial system”[51].

35

Any agent which functions in a dynamic, physical environment, and has a symbolic reasoning

component, must have a solution to the anchoring problem. Whereas symbol grounding is concerned

with giving meaning to all types of abstract symbols, anchoring restricts the symbol grounding prob-

lem to the technical problem of maintaining the relationship between symbols and the percepts that

refer to the corresponding external physical objects[49]. For example, the anchoring of a household

robot could involve linking sensorimotor representations of household objects to the internal sym-

bolic representations of those objects. However, the anchoring problem is subject to the criticism

that by restricting the grounding problem to a specific subset of entities (i.e. physical objects), an

incomplete theory or solution will be achieved[12].

2.4.4 Vision

Grounding research in the area of vision is concerned with the semantics of computer images, such

as real-time vision for robotic systems or content-based image retrieval (the task of categorising and

searching through large collections of images). Examples of work in this area include Davidsson[53]

who uses neural networks to learn object models for identifying and categorising objects. Hudelot et

al.[75] view the grounding problem, in the context of computer vision, as how to provide a mapping

between numerical image data (i.e. statistical features) of processed images and representations

of semantic concepts. Two approaches are presented - a neural network based approach and an a

priori knowledge based approach. Both approaches involve connecting low-level image data with

semantic representations through the use of visual concept ontologies. Chella et al.[38] suggest

using conceptual spaces[57] for computer vision representations. Conceptual spaces are geometric

representations (see Section 2.3.2.4) which Chella et al. use as an intermediate layer of representation

between raw image data and symbolic representations. Solid block-like shapes are represented

using a particular mathematical technique known as superquadrics, and complex objects are then

represented by combinations of superquadrics (e.g. a hammer may be composed of two solid shapes

- one for the handle, and another for the hammer’s head). A similarity metric is then used for

categorising, identifying and comparing different objects. In other research, Chella et al.[39] suggest

how conceptual spaces modeled with superquadrics can be used with situation calculus[92] (a long-

standing formal logic for representing action and change) for interpreting motion in dynamic scenes.

2.4.4.1 Pastra’s Double Grounding

Human communication involves constant integration of visual and linguistic information. Pastra[98,

97] discusses the need for language-vision integration in robotics, and the role that grounding plays

36

in this process. Pastra coins the term “double-grounding” to describe the process and theory be-

hind how visual representations ground language in physical aspects of the world, while linguistic

representations ground vision in mental aspects of the world. Her aim is to endow agents “with

the intrinsic intentionality required for exemplifying intelligence in vision-language multimodal sit-

uations”, claiming that her approach “actually endows an agent with the intrinsic intentionality

required for exemplifying intelligence in vision-language multimodal situations”[97]. One of Pastra’s

systems, called Vlema (Vision-Language intEgration MechAnism), uses an inference mechanism

for associating its visual and linguistic representations, producing textual descriptions of building

interiors.

2.4.4.2 Image Retrieval and the Semantic Gap

Recent advances in computing, communication, and data storage have led to an increasing number

of large digital libraries of documents (both text-based and with multi-media content) publicly

available on the Internet. Information retrieval is the science of searching within large collections of

information for relevant text, documents, and/or images. Within the realm of content-based image

retrieval, the “semantic gap” problem[75, 143] is related to the grounding problem. The semantic

gap problem describes the problem of retrieving images that match a user’s search query. The

semantic gap problem reflects the discrepancy between the relatively limited descriptive power of

low-level imagery features and the richness of user semantics.

2.4.5 Action and Behaviour

While both humans and animals are capable of autonomously acquiring skills which require high

degrees of dexterity, the same is not true for robots. Mobility tasks such as walking and running pose

serious challenges for legged robots, while the manipulation of objects (e.g. even kicking, throwing

or catching a ball) is even more difficult. Perhaps more importantly, in most cases the robots have

little understanding of their own actions or their consequences. In comparison to the large body of

grounding research focusing on language and perception, there is relatively little work concerning the

grounding of action and behaviour. Some examples include Wermter[140] who uses neural networks

and imitation learning to learn how to perform and recognise three behaviours - “go”, “pick”, and

“lift”; Law[86] uses neural networks to evolve wall following behaviours; Coradeschi and Saffioti[50]

focus on anchoring instructions within a logical framework such as telling the robot to “go near” a

particular object; and Chella et al.[40] present a framework for describing actions using conceptual

spaces[57].

37

2.5 Summary and Conclusion

In this chapter we have discussed a variety of topics, including:

• Harnad’s influential symbol grounding problem[67], which asks how can the meanings of sym-

bols be made intrinsic to the symbol system, rather than being interpreted by the human users

of the symbol system. Harnad’s solution to this problem is to connect symbols to subsymbolic

sensorimotor representations through the use of neural networks.

• Numerous researchers[36, 89, 101, 144, 120] have commented that the symbol grounding prob-

lem is not restricted to logic-based systems, and instead is relevant to all types of representa-

tional systems.

• Brooks’ physical grounding[21] treats the grounding problem from a behaviourist perspective,

and is concerned with the engineering of grounded behaviours through a tight coupling of sens-

ing and acting (rather than being concerned only with the grounding of a symbolic reasoning

component).

• There are numerous approaches to modeling meaning which ignore the grounding problem

entirely, instead modeling the meaning of symbols through their relationship to other symbols,

with no symbols grounded in experience of the “real-world”. The most famous example of this

approach is CYC[87].

• Grounding is a multidisciplinary problem, with areas of grounding research including psychol-

ogy, natural language processing, evolutionary and computational linguistics, computer vision,

information retrieval, and developmental robotics.

In conclusion, while grounding to most researchers is concerned with establishing intrinsic mean-

ing in artificial systems, approaches to solving this problem address a different problem - i.e. the

problem of establishing a theory of reference between “symbolic” representations used for decision-

making and the “subsymbolic” sensorimotor representations (i.e. sensorimotor data) that relate to

the real-world entities being represented. Thus, grounding is commonly treated as a problem of

categorical perception, in which machine learning techniques (such as neural networks) are used

to learn the relevant categories of sensorimotor experience, and these categories are then in turn

“connected” to high-level representations used for decision-making.

Next, we consider the implications of grounding for practical robotics.

Chapter 3

Grounding: A Programmer’s
Perspective

Let’s briefly recap. In the previous chapter we were presented with a range of views on grounding,

concerning not only how to approach it, but also differing on what it exactly is. While all approaches

are concerned with meaning (and most approaches with meaningful representation), interpretations

of the nature of both representation and meaning vary under each approach (as we would expect

with the meaning of meaning being such a long-standing philosophical problem). Approaches which

ascribe to Harnad’s symbol grounding[67] aim to develop intentional systems with intrinsic meaning,

but rather than modeling such notions of meaning through self-awareness or introspection, meaning

is modeled as a problem of reference - that is, connecting representation to sensorimotor data.

Alternatively, physical grounding[21] views grounding as a holistic problem of embedding a robot in

an environment. Even Harnad, as far back as 1993, has stated that symbol grounding “is beginning

to mean too many things to too many people”[70].

In this section we consider the grounding problem in the context of practical robotics - i.e.

what it is, and why it is important with respect to building robotic systems that satisfy a set of

requirements or serve a particular purpose1. In particular, a definition of grounding is offered that

defines the problem as it is treated for the remainder of this dissertation, and a justification of

that definition will be argued. Specific subproblems of the grounding problem will be identified,

providing light on why the grounding problem is so difficult. Lastly, the chapter will conclude by

discussing the need for systematic method in grounding robotic agents, including a discussion of

relevant development methodologies. Grounding Oriented Design (Go-Design) - a methodology for

designing and grounding robotic agents - will then be introduced in the following chapters.
1As opposed to systems which are developed purely for research or as cognitive models.

38

39

3.1 A Working Definition

“It is (and will always remain) a logical possibility that even the kind of grounded system

that is the ultimate goal of my approach - a system capable of passing the ‘Total Turing

Test,’ ... i.e., one whose linguistic ... and robotic capacity is totally indistinguishable

from our own - could fail to have any intrinsic internal meanings”(Harnad[70])

“All models are wrong; some of them are useful.”[17]

Before we discuss the relevance of the aforementioned quotes, recall that in Chapter 1 the fol-

lowing definition of grounding was offered:

Grounding is the process of embedding an artifact in an environment to serve a particular

purpose. In the case of robotic agents, it involves enabling that agent to be “in touch”

(colloquially speaking) with the state, and nature, of the environment. Grounding is

related to the process of perception, and involves correctly perceiving, conceiving, and

responding to relevant aspects of the world. Grounding, however, is both task-specific

and “body” specific - different agents, with different sensorimotor capabilities, performing

different tasks in different environments, will need to perceive, conceive, and respond to

different changes in the world with different levels of accuracy or acceptable error. Thus,

we assume there can be a degree of error between an agent’s beliefs about the world,

and the state of that world (which may also be unknown to us). The term groundedness

is used to describe how well an agent is grounded, with groundedness being graded and

multi-dimensional.

Note, there is no use of the term “meaning” in this definition. While grounding is related to

meaning, meaning is a concept which has troubled philosophers throughout history. Researchers

have been unable to agree on a definition of meaning, and theories of how to implement a model of

meaning are even less clear. As such, in the context of practical robotics, the utility of discussing

grounding implementations in relation to meaning is questionable. It is even debateable whether

a robot will ever be capable of being a meaning “user” (i.e. capable of experiencing meaning

intrinsically) - Searle’s[111] argument might be right. Also, we may not need robots to be meaning

users, self-aware or have intentionality to be useful. As Harnad[70] points out, we many never be

able to answer this question - even if we manage to develop artificial intelligences that equal or

surpass our own.

40

3.1.1 The Process of Embedding

Grounding research is motivated by the difficulties of building autonomous agents capable of per-

ceiving and acting intelligently in dynamic and uncertain environments. While many researchers

argue that for an artificial agent to be grounded it must autonomously learn the meaning of rep-

resentations (e.g. [67, 69, 102, 59, 127, 109, 108, 133, 120]), the fact is, all artificial agents are

embedded by design in their environments. That is, designers use their knowledge of the problem

to design appropriate control mechanisms, regardless of the balance between knowledge acquired

through learning versus innate knowledge endowed to the robot’s control program a priori. So, is

grounding the process of writing control programs? No, but it is involved in this process. More

specifically, we ground robots by understanding the world for them. The process of embedding an

artificial agent in an environment involves identifying regularity and structure within the world that

can be used for decision-making. For the designers of robot control programs, it can be as simple

as making decisions regarding “what” to perceive and represent. For example, the designer of a

control program for an autonomous vehicle may decide to represent and perceive other cars, traffic

lights, pedestrians and so forth. Likewise, with regard to implementing a representation design,

developers may make decisions such as identifying a sensor state (e.g. a sensor value or pattern of

values) which correlates to something in the real world, or in the case of a learning system, develop

a (biased) learning algorithm to learn such a relationship. Unfortunately, we often encode little of

this knowledge of how we understand the world into the program, and a “code-and-fix” iterative

development paradigm results.

3.1.2 Groundedness

Anyone who has ever had “hands-on” development experience in robotics knows a robot’s model

of the world will invariably have a degree of error, and the nature of that error can vary. For

example, a robot soccer player may miscalculate the distance of the soccer ball from the robot, or

alternatively fail to “see” the ball entirely. The term groundedness[142] refers to the quality of an

agent’s grounding - i.e. how well the agent is grounded. Systems from airline reservation databases

to autonomous mobile robots rely on grounded representations. For example, an airline reservation

system must manage information about flights and passengers in a way that corresponds to real

flights and real passengers. Similarly, an autonomous mobile robot that navigates a physical space

will be more effective in achieving its objectives if its internal representations of physical barriers

correspond to real physical barriers in its environment. Despite the varied approaches to grounding,

little attention has been paid to measuring and assessing the performance of different theoretical

approaches and practical implementations (except for [142]). There are many unanswered questions:

41

When is an artificial agent grounded?2 Can one agent be more grounded than another?

The prevailing view regarding a system’s groundedness is that for a system to be grounded it

must learn its own meaningful representations or symbols[67, 69, 102, 59, 127, 109, 108, 133, 120].

Our view is that in assessing the quality of an agent’s beliefs it is unimportant3 whether such beliefs

are embedded in the program by the programmer, or are whether they are learned by a learning

program (in which case the learning algorithm and its biases are also embedded by the programmer).

Rather, what is important is the quality of the agent’s representation with respect to the agent’s

intended purpose. To put it simply, an agent is grounded when it knows what it needs to know, to do

what we need it to do. In other words, an agent is grounded when its knowledge and understanding

allows for sound decision-making and appropriate action, therefore making it possible for an agent

to accomplish its intended purpose. However, as groundedness is graded and multidimensional, the

point at which a robot’s grounding is “satisfactory” is not always clear. For example, consider a

soccer playing robot and its representation of the location of the soccer ball. The representation

of the ball’s location may be in error by the smallest of distances (e.g. 1 millimetre), a large

distance (e.g. 1 metre), or somewhere in between. Thus, when considering if a representation is

grounded, our judgements must be made with respect to task requirements and task performance.

That is, designers must specify and understand what constitutes a grounded representation for each

grounding problem.

3.2 The Difficulties of Grounding

“The standard reply of the symbolist ... is that the meaning of the symbols comes from

connecting the symbol system to the world ‘in the right way.’ But it seems apparent that

the problem of connecting up with the world in the right way is virtually coextensive

with the problem of cognition itself.”[67]

Due to the ease and effortlessness of which we “make sense” of the world, developers often tend

to underestimate the complexities and difficulties in building autonomous agents. The grounding

problem is a difficult problem, and has been compared in difficulty to the entire problem of artificial

intelligence[67, 12]. In this section we detail specific problems related to grounding. In particular,

two main grounding subproblems will be presented: the problem of relevance, and the problem

of reference. The problems of relevance and reference will then be illustrated by comparing the

difficulties in writing traditional software (for which we use the example of writing a program to

operate a pocket calculator) with the difficulties of writing programs for controlling autonomous

2For brief discussions of this issue see [91, 128].
3Unless it is specifically relevant to the project.

42

mobile robots.

3.2.1 Representation Design

Designing and implementing the innate representation for an agent is an unavoidable problem of

agent construction. While there has been debate over the need for explicit representations of the

world[23], all autonomous agents require at least a description of how to act in the world. The

choice of representation governs how both the agent and designer must “think” about the world,

with different representations often producing different outcomes - a phenomenon known as “rep-

resentation dependence”[66]. Representation design contains two central, but related, problems

(or “pitfalls”[101]): the problem of relevance, which concerns identifying what to represent; and the

problem of reference which concerns how to maintain that representation with respect to a changing

world.

3.2.1.1 The Relevance Problem

“For one doesn’t want to re-plan in the face of every change, only those which are relevant,

that is, which are likely to affect the achievability of the goal. Thus, for a heavy robot

moving across a room the location and dynamics of big, solid objects is likely relevant,

but the speed and direction of the draft from the open window is not. Unless the task

is to carry a stack of papers. Likewise, the broken and deeply pitted floor tiles make

no difference to a robot with big spongy wheels, but might matter to one with different

means for locomotion. In general, what counts as a relevant fact worth noticing - say,

whether something falls in the general class of obstacle or not - will depend both on the

capacities of the agent and the task to be performed. This is obvious enough, to be sure,

but turns out to be notoriously difficult to implement in a representational system of any

size”[5].

We do not sense, perceive or represent the entire environment due to the sheer magnitude and

complexity of the reality in which we exist. The problem of relevance concerns what to represent[5].

The relevance problem is related to the long-standing frame problem[92], which concerns the problem

of how to represent the effects of action without having to explicitly represent the large (possibly

infinite) number of intuitively obvious non-effects. Relevance is governed by the goals and objectives

of the system. That is, representations serve a purpose - it doesn’t make sense to represent unless

one knows what the representation affords. Currently, most decisions concerning relevance are made

by the designer a priori, rather than by an algorithm at run-time.

43

3.2.1.2 The Reference Problem

The relevance problem concerns what to represent; the problem of reference concerns how to main-

tain the correspondence between representations and the entities they refer to. The problem of

reference is related to the problem of perception, as it involves relating representations to senso-

rimotor data. The problem of reference is made difficult by a changing world - how do we create

a representation which reflects in a timely manner the relevant aspects of a dynamic world? The

difficulty of this task is compounded by the quality of artificial sensors, as robot sensors often con-

tain a high-degree of noise, and therefore also uncertainty. There are a number of specific errors of

perception that can arise when tackling the problem of reference:

• “False positives” and “false negatives”[42]. False positives describe the situation in which the

robot effectively hallucinates, falsely perceiving the presence of an entity. In contrast, false

negatives describe the situation in which the robot fails to perceive the presence of an entity

in a timely manner.

• “Perceptual aliasing”[141] describes the situation when an agent’s internal representation con-

founds external world states due to partial observability of the world. For example, there may

be multiple, distinct situations which require separate responses - however, the perceptual

input for these distinct situations may appear similar (or even identical).

• Errors of precision and quality (i.e. groundedness). For example, a robot soccer player correctly

detects the presence of the soccer ball, but misperceives the distance or location of the ball.

These errors of perception can easily arise as no two percept images of the same entity will rarely

(if ever) be identical. For example, in computer vision the same object can appear differently due

to changing lighting conditions, as a result of changing viewpoints, occlusion, or from being only in

partial view, and an object may even change its appearance over time. Compounding this problem,

two different objects may appear almost identical, and in this case, it presents the problem of how

does an agent discriminate?

3.2.2 “Traditional” Software vs Robotics Software

Recall that in Section 3.1 grounding was defined as the process of embedding an artifact. Thus,

from the perspective of a programmer, what is the difference between grounding a pocket calculator

and grounding an autonomous robot? A pocket calculator has both sensors (a keypad) and effectors

(a screen to display numbers), just as a robot has sensors and effectors (albeit with different capa-

bilities). Certain events need to be perceived (the pressing of buttons), and “behaviour” must be

generated (the correct calculations displayed). However, developing the software to operate a pocket

44

calculator (and “traditional”4 software in general) is seemingly much simpler than developing the

software to control an autonomous mobile robot. In the following subsections we consider why this

is so.

3.2.2.1 Perception

With regards to perception, both the problems of relevance and reference are easily overcome when

writing the software for operating a pocket calculator. Let’s begin by considering the problem of

reference. Firstly, the programmer of a pocket calculator can assume that the buttons of a pocket

calculator work correctly. Likewise, when developing traditional software the programmer assumes

input devices such as keyboards or mice are reliable. In contrast, the sensors of an autonomous

mobile robot (such as cameras, distance sensors, microphones, etc.) have a degree of noise. That is,

even in a static, constant environment a sensor on a mobile robot may produce different readings.

Secondly, the mapping between sensor events and real-world events is straightforward with tradi-

tional software. Consider the pocket calculator - if a “button press” event is detected on the “9”

button, the programmer can safely assume that in the real-world the “9” button has been pressed by

the user5. In contrast, consider an artificial vision system - the robot programmer must contend with

a real-time stream of images (e.g. more than 25 images per second), where each image may contain

thousands and thousands of bytes of data, and it is likely no two images are ever identical. To make

matters even more difficult, many different real-world entities and events may need to be discrimi-

nated from such a stream of data, whereas with the pocket calculator there is a straightforward 1:1

mapping from each sensor (a button) to a real-world event (the button press).

This brings us to the problem of relevance. For the programmer of the pocket calculator, the

real-world events that are required to be detected are not only finite, but more importantly a priori

knowledge of these events is complete. There are a finite set of digits in the decimal number system,

and a finite set of operations that can be performed on them. However, for the programmer of an

autonomous mobile robot, the real-world events or entities that may need to be detected may not

be completely known a priori. Thus, the robot programmer may be required to develop a program

that can recognise new, important events or entities without knowing what those entities might be.

In the case of the pocket calculator, it is analogous to having to write a program which can deal

with the advent of a new numerical operator or number system, but without manually changing the

programming of the calculator.

Thus, generally speaking, the complexity and uncertainty of input streams for robotics software

far outweighs that of most forms of traditional software. Compounding this problem is the fact that
4e.g. software that runs on personal computers with monitors and keyboards, etc.
5Even though it may have been unintentionally bumped or pressed.

45

the robot programmer often has incomplete knowledge of the events and entities that may need to

perceived in the future.

3.2.2.2 Action

For the programmer of a calculator, using the calculator’s effectors is a simple task - a mat-

ter of calling a procedure (e.g. to display the number “100” a parameterised command such as

“print-screen(100)” might be called). With traditional software, there are rich libraries of pre-

built, reliable effector commands for controlling devices such as monitors, printers, and so forth.

In contrast, for robots, many actions and behaviours need to be written from the ground up, and

are difficult, complex problems in themselves. For example, developing gaits for legged robots is a

research area in itself, in which researchers devise algorithms to control many motors (often three

or more per leg) at the same time, over time, to produce walking behaviours. Thus, representation

design for robotic agents must map to capabilities that the robot can perform, and often at the

beginning of a robotics project the behavioural capabilities of a robot are uncertain or unknown.

Just as the sensors of traditional software are reliable, so are their effectors. The pocket calculator

programmer can assume that a command such as “print-screen(100)” is deterministic - or simply

put, the programmer can assume it will work. The same is not true for many robotic effectors, actions

and behaviours. Whereas the performance of output devices of traditional software are not affected

by the environment6, the performance of many robotic effectors are directly related to the state

of the environment. As such, robotic actions and behaviours can be non-deterministic - i.e. they

can fail or have unintended consequences. Thus, while separation of input and output is clear-

cut in traditional software, many robotic actions require perception to guide them. For example,

autonomous robots may be required to act upon dynamic objects in dynamic environments (e.g.

kicking a ball, cleaning up trash, etc.). Also, as actions may fail, the robot programmer is posed

with problems such as how does the robot “know” an action has failed, how does it know the cause

of that failure, or alternatively, how does a robot even know that an action has been successful -

and is such knowledge even relevant or necessary?

So, we’ve come full circle - action for robotic agents, just like perception, is affected by the problem

of relevance (i.e. what does the robot need to know about action?) and the problem of reference

(i.e. how does the robot maintain its representation about action with the performance of that

action in reality?). Unfortunately, this not only brings all the difficulties associated with perception

(as discussed in Section 3.2.2.1), but is made more difficult as perception must be integrated with

action.
6Of course, devices such as monitors and printers are physical devices and therefore invariably fail over time due

to wear-and-tear - however, the programmer can assume they will work correctly.

46

3.2.2.3 Requirements and Specification

When writing the software to operate a pocket calculator, the programmer has clearly defined func-

tional requirements - not only does everyone know how a calculator should behave, the functional

requirements for a calculator can be easily formalised and specified. Moreover, the functional speci-

fications are static - they do not change with time. Similarly, with traditional software, requirements

can be specified in numerous ways - for example, by using graphical screen layouts, measures of per-

formance such as speed of execution, or action flows (e.g. “when the user clicks the ‘print button’

the report should be printed”), and so forth. Again, functional specifications tend to be relatively

static, and in the world of commercial software development, changes to specifications are only made

with discrete revisions that are “signed off” by both the developer and the customer.

As a robot is a physical being (i.e. not simply a disembodied software agent), the nature of

requirements for robots differs from traditional software in that many (but not all) requirements

are specified in terms of human-like behaviours (e.g. deliver the package, detect the intruder, etc).

The engineering of robot minds is complicated by the fact that specifying requirements (i.e. “what

must the system do?”) involves specifying a design (i.e. “how can it be achieved?”). For example,

imagine building a household robot, for which has the requirement “the robot should be able to get

you a drink from the fridge”. Consider the countless ambiguities and decisions that may arise in

performing such a (relatively) simple task. Should the robot be able to get you any type of drink

from the fridge? Should it be able to pour a drink from a container into a glass? What should the

robot do if it can’t find you the drink you want? Or if it spills the drink? Or there is more than one

drink to choose from? And so on, and so on, and so on. Thus, as robots need to be told explicitly

how to do absolutely everything, answering the question of requirements (i.e. “what must the system

do?”) requires the design of a potential solution (“i.e. how should the robot do it?”). Taken to

an extreme, a complete functional specification would encompass every specific behavioural detail

for every relevant situation the robot may ever encounter in the future. Making matters worse7 is

the fact that what is the “right” action from one person’s perspective may be the “wrong” action

from another person’s point-of-view - we all have different ideas of what constitutes “commonsense”.

Thus, another member of the household may want the household robot to behave differently in the

situations we have just described. Therefore, because autonomous mobile robots are expected to

operate in dynamic, uncontrolled environments, and as many of the the capabilities of a robot are not

realised at the beginning of a project, generating performance specifications and requirements is not

a straightforward task. Moreover, generating functionally complete specifications and requirements

may be impossible, or at the least, very difficult.
7Yes, it gets worse.

47

3.2.2.4 Testing and Debugging

Testing software involves comparing software against the software’s requirements or specification,

while “debugging” refers to the process or locating and removing faults in a computer program.

With our pocket calculator, systematic testing and debugging can be easily undertaken for two main

reasons: firstly, the pocket calculator has a precise set of requirements - thus erroneous behaviour

is easily detected; secondly, when faults are detected by the tester, as all input into the system (i.e.

button presses) can be controlled and replicated by the tester, faults can be reproduced and isolated.

Unfortunately, it is rare for these conditions to be true for autonomous mobile robots. As

highlighted in the previous section (3.2.2.3), specifying precise requirements is often difficult for

robotic projects. Also, as autonomous mobile robots operate in dynamic environments, testing

and debugging is difficult due to the tester’s lack of control over many real-world environmental

conditions. As such, debugging (or understanding “why” an autonomous agent behaved in particular

manner) is difficult because one can never be exactly sure which particular aspect or state of the

environment triggered the errant behaviour. Conversely, the situations in which an agent is tested

will never be exactly the same as the future conditions in which the agent will function. Our ability

to debug robotic systems can also be restricted by our (i.e. human) perceptual systems - that is,

the features of the environment the robotic agent’s sensors respond to may be incapable of being

perceived by our perceptual systems. So, while the agent’s control algorithm may work successfully

in one particular environment it may fail in another, even though the environments are perceptually

indistinguishable to the human tester. The developer’s problem is exacerbated by the fact that

observable behaviour may give no clue as to the internal dynamics producing the behaviour. For

instance, a robot moving in what appears to be a straight line path can be the result of the control

program oscillating between movements to the left and right. Lastly, the problem of testing and

debugging robotic agents is exacerbated when we move to multi-agent systems.

3.2.3 Summary

Designing and grounding representations has two key problems - the problem of relevance, which

involves deciding what to represent; and the problem of reference, which involves maintaining the

correspondence between representations and their referents. As we saw in Chapter 2, most grounding

approaches focus on the problem of reference, and there is little (if any) grounding research devoted

to the problem of relevance, with most decisions regarding relevance (and to a lesser extent reference)

made by designers, not programs. Both the problem of relevance and the problem reference affect

the grounding of perception and action for robotic agents, and both problems are made difficult by

a complex, unpredictable, and changing world. Perception is a difficult task due not only to the

high degree of complexity in sensory streams, but also because the perceptual signatures of relevant

48

entities change with the world, while different entities may have similar perceptual signatures. With

“traditional” software there is a clear separation of input and output, while action is deterministic. In

contrast, with robotic agents, physical action is non-deterministic and requires perceptual guidance,

and thus decisions must be made regarding the relevant aspects of action that should be represented,

and how those representations should be maintained over time. Also, as robots are expected to

perform physical action, specifying requirements for robotic projects includes specifying requirements

in terms of the “correct” decisions that should be made, which creates the problem of separating

requirements from design. As a complete set of requirements for a robotic agent would necessarily

entail a design of how the the agent should act in all future situations, specifications for robotic

agents will be incomplete. As a consequence, when testing robotic agents there is often no precise

benchmarks or expectations to compare the system’s performance against. Testing is also made

difficult because replicating faults is difficult due to the uncontrolled, dynamic nature of the real-

world.

In summary, as programmers of robotic software must plan for an unpredictable future, robotic

development tends to be a highly iterative, “code-and-fix” paradigm. To develop truly autonomous

robots we need to solve the grounding problem - i.e. develop a systematic method for grounding

robotic agents, freeing developers from the task of revising a program every time an unanticipated

aspect of the environment negatively affects the robotic system’s performance. Finally, this brings

us to our next topic of discussion - the need for a general, systematic method of grounding robotic

agents.

3.3 Towards a General Grounding Solution

Ensuring the groundedness of agents’ representations is imperative for successful autonomous decision-

making, with the manual creation and maintenance of representation being one of the largest costs

associated with deploying robots. Any artificial agent operating in a changing environment is re-

quired to respond appropriately to that environment, and thus must have a “solution” to its par-

ticular grounding problem. However, when grounding agents, decisions of relevance (i.e. what to

represent) and reference (i.e. how to maintain that representation over time) are, on the whole,

made manually by designers, rather than by programs - i.e. robotic agents are grounded by design.

As such, current approaches to grounding robotic agents are ad-hoc - we make the decisions regard-

ing relevance and reference on a case-by-case, system-by-system, task-by-task basis, but we embed

little (if any) of the knowledge of how we find structure and meaning in the world. Therefore, such

solutions are usually restricted to the particular domain for which the agent operates. As our robots

can not autonomously ground themselves, robotic systems tend to brittle in the face of change, and

49

a highly iterative “code-and-fix” development paradigm results. Thus, a general solution to the

grounding problem is required.

In this section we consider methodologies which have been developed to aid the development

of control programs for autonomous mobile robots. A methodology for grounding robotic agents

is needed to provide a means for the systematic grounding of autonomous robots, while in the

longer term, assist the development of autonomous grounding capabilities through an improved

understanding of the processes by which human designers ground robot minds.

3.3.1 Software Development Methodologies

As most control programs for a robot will be implemented in software, software development method-

ologies are relevant to the design and implementation of software-based robot control programs.

While software design is a creative process, it is not devoid of structure, and software development

methodologies are intended to facilitate systematic development of software, aiming to minimise risk

and improve product quality. There are numerous software design methodologies - e.g. procedu-

ral programming, structured programming, declarative programming, object-oriented programming,

design patterns, application frameworks and component-ware[78]. A methodology for software devel-

opment defines the abstractions used to model software. For example, procedural programming uses

procedures, object-oriented programming uses objects, and so forth. Recent trends in software devel-

opment methodologies have shifted towards methodologies that focus on flexibility, adaptability and

change, such as Agile[85] development and Extreme Programming8. While software development

methodologies can benefit software projects, software for controlling autonomous robots is posed

with unique design and implementation difficulties (as discussed in Section 3.2), most of which arise

from the nature of a robot’s embodiment, such as uncertainty, complexity, uncontrolled and unpre-

dictable environments, the problems of perception and action, and the need for the software program

(i.e. agent or agents) to adapt to and respond appropriately to unforeseen circumstances.

3.3.2 Agent Oriented Software Engineering

“My guess is that agent-based computing will be what object-oriented programming was

in the 1980s. Everybody will be in favour of it. Every manufacturer will promote his

product as supporting it. Every manager will pay lip service to it. Every programmer

will practice it (differently). And no one will know just what it is.”[76]

Agent-oriented software engineering is relatively new approach to software engineering in which

the notions of an agent and agency serve as the core unit of computational abstraction[78, 136].

8http://www.extremeprogramming.org/

50

Jennings and Wooldridge[78] argue that the difference between agent-oriented software engineering

and object-oriented software engineering is that an object is more passive than an agent. For

example, objects encapsulate identity (“who”), state (“what”) and passive behaviour (“how, if

invoked”); whereas agents allow for describing a richer freedom of behaviour and interaction (e.g.

“when”, “why”, “with whom”, “whether at all”, etc.)[136]. While, by definition, an agent is an

encapsulated system, agent-oriented software engineering focuses decomposing a problem into a set

(often a large set) of interacting (and sometimes competing) agents - that is, a multi-agent system

(often called MAS).

Agent-oriented software engineering has two major drawbacks. Firstly, the patterns and the

outcomes of the interactions are inherently unpredictable; and secondly, predicting the behaviour of

the overall system based on its constituent components is extremely difficult due to the possibility of

unanticipated emergent behaviour[77]. Also, while robotic agents are a type of agent - agent oriented

software engineering generally focuses on software, rather than the embodied nature of robots.

3.3.3 Robotics Development Methodologies

We now turn our attention to development methodologies that specifically target robotic agents.

3.3.3.1 Brooks’ Subsumption Architecture

Brooks’ subsumption architecture[20, 21, 23, 24] is a long-standing, behaviour-based approach to

designing and implementing control programs for autonomous mobile robots. A subsumption archi-

tecture is a way of decomposing complex, intelligent behaviour into simpler cooperating behaviour

modules, which are organised in layers. Each layer implements a particular “goal”9 or objective of the

agent, and higher layers are increasingly more abstract. That is, lower levels more closely resemble

reflexes (e.g. an “obstacle avoidance” behaviour), while higher levels pursue longer-term objectives

(e.g. “explore room”). The subsumption architecture earns its name as each layer can subsume

(i.e. overrule or inhibit) underlying layers. Each behaviour is individually hand-built, tested and

physically grounded (see Section 2.1.4) through a tight coupling of perception and action. Figure

3.1 displays how a subsumption architecture may be conceptually organised. Figure 3.2 shows a

schematic diagram for a robot capable of “hallway following”. The “hallway following” robot has

three layers, with the lowest layer performing obstacle avoidance, the middle layer performing a

“wandering” behaviour, and the highest layer responsible for hallway following.

The main benefits of the subsumption architecture arise from the modularity of design, which

allows individual behaviours to be developed, implemented and tested in isolation. Brooks’ advocates
9Note, the term “goal” is used loosely, as Brooks has argued strongly against the need for explicit representation[23].

51

task-specific perception and action, which helps reduce the complexity of each behaviour. The

main disadvantages of the subsumption architecture arise as a consequence of the modular, layered

design. For complex systems, coordinating the subsumption between layers becomes a difficult task,

as action-selection is controlled through a high-distributed process of inhibition and suppression. In

contrast, it is generally a conceptually simpler task for an engineer to describe a behaviour in terms

of a sequence of events, as this is a characteristic of our own planning processes[25].

Figure 3.1: A representation of a possible subsumption architecture. Each layer represents an
encapsulated behaviour (with its own sensing and acting), with higher levels possessing the ability
to subsume lower-level behaviours.

3.3.3.2 Wasson’s Representation Design Methodology

Wasson[135] offers a methodology for designing representation systems for reactive robots operating

in dynamic and uncertain environments. The methodology guides the designer through the analysis

of the robot’s task, capabilities and environment, with the aim of answering the questions of what

to represent, how to structure that representation and how to keep that representation consistent

with a changing environment.

The first step in Wasson’s methodology is involves creating a hierarchical decomposition of the

agent’s task. Wasson asks the designer to perform this process by identifying sequential subtasks and

parallel (concurrent) subtasks. An example decomposition diagram is displayed in Figure 3.3. The

next step is to identify control flows between tasks, and this is represented through the use of “subtask

flow diagrams”, as illustrated in Figure 3.4. Once subtask decomposition process is completed, the

process of designing representation begins. This involves, for each subtask, identifying “task roles”

- i.e. entities in the environment that play a significant role in each task. The designer is then asked

to consider issues such as relevant attributes of the environmental entity, and how frequently the

task role information should be verified, and the required precision (i.e. the groundedness) of the

task role information.

52

Figure 3.2: A schematic diagram of a subsumption architecture robot capable of “hallway
following”[20].

53

Figure 3.3: A decomposition diagram displaying a partial decomposition of the task “walk-the-
dog”[135].

Figure 3.4: A flow diagram for the task “walk-the-dog”[135].

54

3.3.3.3 Real-time Control Systems Architecture(RCS)

Albus et al. have developed RCS[3, 4] (Real-time Control Systems Architecture) - a methodology

and architecture suitable for software-intensive, real-time control problems, such as those posed by

autonomous mobile robots. Albus boldly claims that RCS is designed to enable any desired level

of intelligence, up to and including a human level of intelligence. Inspired by a theory of cerebellar

function, RCS models the brain as a hierarchy of goal-directed sensory-interactive intelligent control

processes, with each control process being implementation independent (i.e. each control process

could theoretically be implemented by neural nets, finite state automata, production rules, etc).

RCS uses a methodology to iteratively partition system tasks into control nodes, with each control

node sharing a generic node model. Each control node contains a process for behaviour generation,

world modeling, sensory processing, and value judgment, together with a knowledge database. The

placement of a control node in an RCS architecture hierarchy indicates the the scope and time span

of the node, with higher level nodes broader in their planning scope. An example RCS architecture

is shown in Figure 3.5.

Figure 3.5: An example of an RCS architecture for controlling an autonomous vehicle. Boxes marked
“SP” perform sensory processing, boxes marked “WM” perform world modeling, and boxes marked
“BG” generate behaviours. Diagram taken from[4].

The RCS design methodology consists of a six step process:

55

1. An intensive analysis of the domain is conducted using domain experts and other available

resources, with the procedural knowledge required to perform the problem task represented in

a hierarchical task decomposition tree. In other words, the task is divided into subtasks, and

each subtask divided into subtasks, and so forth, with each subtask represented as a command.

2. A hierarchical structure of organisational units that will execute the commands defined in Step

(1) is identified. The roles and responsibilities of each organisational unit are specified.

3. The processing that is triggered within each organisational unit upon receipt of an input

command is identified. Thus, how each unit will perform its task is identified, and this solution

is represented as a finite state automaton. Also, the commands that need to be specified to

lower-level control nodes in the tree hierarchy are identified.

4. For each state transition identified in Step (3), the situation in which control should pass from

one state to another is analysed to reveal their dependencies on the world and task states.

5. The relevant world states identified in Step (4) are labeled, and and any relevant attributes of

these world states are also identified.

6. Lastly, the required groundedness of the world states is identified, or as Albus calls it “the

resolutions at which the relevant objects and entities must be measured and recognized by the

sensory processing component” are identified, forming a specification for the sensor system.

Lastly, Albus argues that “all symbols in the RCS world model have been grounded to objects and

states in the real world”[4]. Albus views grounding as a process of establishing correspondence be-

tween internal representations and the sensorimotor data which indicates the referents. The process

of establishing this correspondence in RCS uses “context-sensitive gestalt grouping hypotheses” to

connect data structures which represent entities and events to patterns of signals from sensors. RCS

uses a predictive model in which model-based expectations are constantly compared to sensory-based

observations.

Unfortunately, as of 2005, there “remain many features of the 4D/RCS reference model architec-

ture that have not yet been fully implemented in any application”[4], therefore leaving some doubt

as to the practicality of the RCS architecture. Also, while the RCS architecture appears highly

elaborate, it remains unclear as to what level of granularity (i.e. the tree hierarchy depth and the

time-scope of each node) should be used for different tasks. The RCS architecture results in highly

complex hierarchical designs with no simple notation for representing them (as evidenced by Figure

3.5). Lastly, on a positive note, RCS is the only general purpose robotics methodology (besides

Go-Design), which treats the symbol grounding problem as a problem per se.

56

3.3.3.4 Behaviour Oriented Design

Behavior-Oriented Design[25] (BOD) is a methodology for engineering behaviour-based agents (em-

bodied or software-based) with multiple, potentially conflicting, goals or tasks. BOD is a behaviour-

based approach to intelligence, and is influenced by the Brooks’ subsumption architecture[20, 21,

23, 24]. BOD system architectures consist of a library of behaviours (called behaviour modules),

with each behaviour capable of encapsulating its own perception, action, learning, and represen-

tation needs. Action-selection (i.e. behaviour selection) in BOD relies upon “reactive planning”,

and provides (both in design and code) a specific data structure called POSH (Parallel-rooted, Or-

dered, Slip-stack Hierarchical Reactive Plans) to perform this. With POSH, reactive plans can be

thought of as a hierarchical, prioritised sequence of behaviours that should be executed in specific

circumstances (contexts), with the designer’s task being to specify when and how each behaviour is

expressed. A simple example of a reactive plan is displayed in Figure 3.6.

Figure 3.6: A “basic reactive plan” for a hungry monkey (p.30 [25]). Statements in brackets, e.g.
“(have hunger)”, are conditions upon which behaviours should be triggered. Thus, in this diagram
if the monkey is hungry, it should get a banana, peel a banana, and then eat a banana.

The BOD methodology provides an iterative design process for decomposing the agent control

problem into modular prioritised behaviours, with the decomposition process focusing on identifying

“whats”,“whens”, and “hows”, with Bryson stating that “designing the intelligence for such an agent

requires three things: determining what to do when, and how to do it” (p.23). Behaviours constitute

“how”, “when” is a problem of action-selection, and “whats” being the level of abstraction and

granularity at which a problem is decomposed. Bryson’s notation for representing behaviours is

displayed in Figure 3.7.

The BOD methodology consists of two main phases - creating a specification, and implementing

the specification. A system specification consists of:

1. A high level description of what the agent does.

2. A representation of the actions the agent will perform in terms of reactive plans.

3. The list of whats (including questions/senses) that occur in reactive plans.

57

Figure 3.7: A behaviour diagram from BOD (p.27) which represents a monkey that screeches de-
pending upon who it recognises. Behaviours are represented by rectangular boxes and internal state
is represented underneath the behaviour name.

4. A list of behaviours that form the behaviour library.

5. A prioritised list of goals.

The implementation phase consists of the following steps:

1. Choose a piece of the specification to work on.

2. Implement the behaviours for that piece of the specification.

3. Revise the specification.

4. Go back to Step (1), and repeat until the system is built.

While BOD offers a simple conceptual framework for decomposing intelligence (in terms of

“whats”, “whens”, and “hows”), it is very focused on specifically using the reactive planning tech-

nique for action-selection, thus making it difficult to use in situations where reactive planning is

not appropriate. The notation for representing behavioural designs is at a conceptually high-level,

thus leaving room for the same behaviour design to be implemented in many different ways. During

design, perception, action, and internal state are bundled together into behaviours with no clear

distinction. Representation is treated only as internal state, and mechanisms for maintenance or

assessing the quality of that representation are ignored. It also does not provide any structured

mechanisms for assessing system performance.

3.3.3.5 Roy’s Grounding Framework

Roy[107] offers a grounding framework for grounding language in the world for robotic agents. Roy

argues that current approaches to designing language processing systems are missing the “critical

connection” of grounding, with grounding defined as the ability to “use words to refer to entities

in the world”. Roy uses “schema diagrams” to design systems, with schema diagrams consisting a

“structured network of beliefs connected by projections” of sensorimotor experience. There are a

number of types of projections including:

58

• sensory projections, which are “here-and-now” interpretations of sensory data;

• transformer projections, which map “from one analog domain to another”. In other words, an

interpretation of a sensory projection, and thus can be likened to a perception;

• categoriser projections, which “map analog domains onto discrete domains”;

• action projections, which result in a binary, success or fail, outcome.

Figure 3.8: An example of a “schema for a tangible (touchable, graspable, moveable, visible) object
such as a cup”, taken from Roy’s Grounding Framework[107]. Legend: “Analog beliefs” are repre-
sented by ovals, “categorical beliefs” are represented by rectangles, “sensor projections” by triangles,
and “action projections” by diamonds.

An example schema diagram is displayed in Figure 3.8. The main limitations of Roy’s grounding

framework arise from its focus - its main concern is schematically representing the relationships

between words representing language, and the relationship between those words and the sensorimotor

experience of the agent. For example, the design is at a conceptually high-level - the diagram in

Figure 3.8 could be implemented in many different ways. Where does flow-of-control start and

end? No process for designing a schema is offered, as are processes for verifying a design lacking.

For example, Roy states action projections result in a binary outcome (success or fail), yet in the

example provided (Figure 3.8) failure conditions are not represented. What happens if any of the

success conditions are not achieved? How are success conditions evaluated?

59

3.4 Summary and Conclusion

In this chapter we considered the grounding problem from the perspective of designing and imple-

menting software-based control programs for autonomous robots. Grounding was defined as the

task-specific process of embedding an artifact in an environment, while the term groundedness was

used to describe the quality of an agent’s grounding, with groundedness being graded and multi-

dimensional. Simply put, it was argued that a robot is grounded when it knows what it needs to

know, to do what we intend it to do.

Currently, agents are grounded-by-design - i.e. we ground robots by understanding the world

for them. In other words, we identify structure and consistency in the world that can be used

for decision-making. For example, we make decisions regarding what to represent (the problem of

relevance), and we also make decisions regarding how to maintain that representation over time (the

problem of reference). We compared the difficulties of grounding traditional software (for which

we used the example of a pocket calculator) with the difficulties of grounding control programs for

autonomous mobile robots, concluding that the problem of grounding in the context of robotics

is a much more difficult problem due to programmers having to anticipate and find structure in a

changing, complex, uncertain, and unpredictable world.

Due to the difficult nature of the grounding problem, designers to tend ground robotic agents on

a case-by-case, task-by-task basis, but without embedding any of our grounding “know-how” into

the robot’s control program. Consequently, this results in brittle systems which require frequent

program revision with each unanticipated change in the world, as evidenced by the highly iterative,

code-and-fix nature of the robotics development paradigm. Thus, a general, systematic solution to

the grounding problem is required.

A number of existing robotics design and development methodologies were examined. However,

none are specifically designed for grounding robotic agents. For example, Roy’s grounding framework

only considered schematic representations for grounding language, while Albus’s RCS provided a

model of how to ground, but many features of the architecture have never been implemented (and

the architecture is highly complex). In the following chapters we will consider Grounding Oriented

Design (Go-Design) - a methodology specifically designed with the grounding problem in mind.

Chapter 4

Grounding Oriented Design:
Introduction and Overview

“Grounding Oriented Design” (or Go-Design for short) is a methodology for designing and grounding

the “minds” of robotic agents. In this chapter we begin by providing an overview of the methodology,

beginning with Go-Design’s objectives and design considerations (i.e. explanations are offered as

to why the methodology has been designed the way it has). Subsequent chapters will present the

details of Go-Design.

4.1 Motivation and Objectives

Grounding is the process of embedding an agent in an environment to perform a task. Or more

colloquially, an agent is grounded when it knows what it needs to know, to do what it we need it

to do. Currently, the majority of the grounding process is performed by program designers, and

not autonomously by the programs we design. That is, designers find meaning, structure, and

patterns in the world that can be used in the design of robot control programs, but due to our poor

understanding of this process, little (if any) of our knowledge of “how to ground” is encoded in

programs. As a consequence, the systems we build tend to be brittle in the face of unanticipated1

changes in the environment or task, and as such, robotics development is a highly iterative code-and-

fix paradigm, in which developing systems capable of “scaling up” to human levels of intelligence

has (so far) proven unattainable.

The development of Go-Design was motivated by the need to solve the grounding problem.

While Go-Design focuses on grounding by design, rather than autonomous grounding (i.e. programs

that ground themselves), developing and refining a grounding methodology provides a small first

1Unanticipated from the perspective of the designer.

60

61

step towards understanding the difficult problem of how we ground, with a longer-term view of

automating this process. Secondly, a grounding methodology can help with the “here-and-now”

problems related to the development of control programs for autonomous robots. As discussed in

Chapter 3, designing software for robotic agents is posed with unique problems, such as selecting the

relevant aspects of the environment to represent, and designing algorithms that can maintain the

correspondence between representations and their referents in an accurate and timely manner. These

problems are extremely difficult as the programmer must make design decisions a priori for agents

that operate in a changing, complex, and unpredictable world. Importantly, the quality of an agent’s

grounding will impact the quality of an agent’s decision-making, as robotic agents make decisions

which rely upon the perceived state of the world. Thus, the groundedness of agents is imperative

for designing robust and reliable systems. When developing Go-Design, two main objectives were

formulated:

1. To build a methodology which would improve the groundedness of systems built using the

methodology; i.e. using the methodology should result in better grounded systems than if no

methodology was used.

2. To build a methodology which, in the longer-term, can improve our understanding of the

grounding process, and that in time can be extended to automate the grounding process.

4.2 Methodology Scope

Both objectives concern improving the groundedness of systems - they differ only in scope. The

scope of the methodology for this dissertation is to assist the designers of robot minds with the

process of grounding-by-design. However, the methodology is intended to provide a base from which

insights into how we ground can be gleaned, with the longer-term view of developing systems capable

of autonomous grounding.

4.3 Design Considerations

How can we build a methodology to improve the groundedness of systems? In light of previous

discussions of what constitutes grounding and how we perform this process (see Chapters 1, 2, and

3) the methodology was developed with a number of considerations in mind, which will now be

discussed, in turn, in the following subsections.

62

4.3.1 Grounded Designers

Designing grounded robots requires grounded designers. As grounding is task-specific, the first

step of Go-Design is understanding the nature of the current problem - a process called context-

level analysis. This process is similar to the requirements elicitation and requirements specification

processes that occur when building traditional software. However, Go-Design’s context-level analysis

is specifically tailored for the development of control programs for autonomous robots.

4.3.2 A Software Problem

Robot control programs will usually be implemented in software, and therefore Go-Design treats

the grounding problem as a software development problem. The designs produced by Go-Design

are sufficiently detailed (pseudo-code is required) that translation from a grounding design to a

software implementation is a straightforward process. Go-Design provides a single diagramming

notation which captures the key aspects of both software design (such as hierarchical, modular,

layered designs, flow-of-control between modules, and pseudo-code) and grounding design (such as

representation, referents, perception, behaviour, and decision-making).

4.3.3 The Relevance Problem

One of the main grounding problems is the problem of relevance - i.e. choosing what to represent.

Thus, Go-Design provides a set of structured steps to assist the designer in identifying relevant

entities that should be represented. This process involves firstly understanding the requirements

and nature of the task-at-hand (a process we call context-level analysis), and then identifying the

knowledge required to achieve the task.

4.3.4 Problem Decomposition and Decision-Making

Knowing what needs to be represented requires understanding the subtleties of what the agent

must do. Therefore, to identify the relevant entities that should be represented the designer must

identify the decisions the agent must make to respond appropriately to changes in the environment.

Go-Design involves iteratively decomposing the problem task into subproblems until decisions are

identified which map to actions and behaviours the agent is capable of performing.

63

4.3.5 The Reference Problem

Grounding involves maintaining representations with respect to a changing world. Therefore, Go-

Design forces designers to identify and define (in terms of decision-making processes) the percep-

tual mechanisms responsible for maintaining the correspondence between representations and their

referents, while also explicitly identifying the decision-making processes which rely upon those per-

ceptions.

4.3.6 Groundedness

When is the quality of an agent’s grounding “good enough”? How do we “debug” (i.e. find and

fix faults in) ungrounded robots? A designer should be able easily explain why a robot is behaving

in a particular manner - building a grounded robot requires a grounded designer. To help ensure a

high quality of grounding, Go-Design guides designers through a process of identifying groundedness

requirements for representations based upon the consequences of decision-making processes which

rely upon those representations. Also, Go-Design creates transparent, easily understood designs in

which the decisions that are dependent upon particular representations can be easily traced and

identified, as well as offering structured processes for testing robotic systems.

4.3.7 Design Considerations - Summary

When grounding robotic systems the designer is faced with multiple, inter-related problems. Un-

derstanding representational relevance requires decomposing the problem into a set of decisions,

while devising means to maintain the reference of relevant representations requires more decisions

to interpret sensorimotor data. Lastly, when evaluating the performance of a system the developer

must consider whether errors are due to poor decision-making logic, due to representations which

misrepresent the state of the world, or because the system lacks the decision-making processes and

representations to respond to relevant real-world events. For each of these problems, Go-Design pro-

vides a set of structured processes to assist the designer. Next, a brief overview of these processes

is presented.

4.4 Methodology Overview

Due to our interest in grounding, Go-Design focuses on understanding (both of the developer and

robot) by providing a simple means for modeling knowledge and decision-making in robotic systems.

The design process has two main components:

64

• Processes, guidelines and techniques for designing a robot’s mind in terms of units of encap-

sulated abilities which we call skills.

• A modeling notation for representing a mind’s design through skill diagrams.

Thus, the main unit of abstraction employed by Go-Design is the skill. Skills are encapsulated

abilities, which when working collaboratively, can accomplish the problem task. Skills can be any-

thing - the ability to see, to throw and catch a ball, or to even “think”. We could have called “skills”

many other names, such as “abilities”, “capabilities” or “things a robot can do”. Skills are similar to

the behaviours of a behaviour-based system, but differ in that skills need not be reactive (as usually

the case with behaviour-based systems), and need not be physically based (e.g. the ability to plan

can be a skill, or the ability to perform arithmetic can be a skill).

Go-Design identifies four types of skill: actions, decisions, perceptions and behaviours. Actions

have no perception, and they can be assumed to be deterministic - i.e. the designer can assume

they will “work” (but of course they might not, due to wear-and-tear, and so forth). Examples of

actions include telling a motor on a robot to move to a particular position, or to set a pixel’s colour

on a monitor. While actions may lack perception, they can be decomposed. For example, an action

such as “walk one step” could be constructed, without perception, as a sequence of motor positions.

Decisions are a type of skill, which as their name suggests, are responsible for making choices.

Decisions, in software, are implemented as testable conditions (e.g. “if” statements), which based

upon the result of that testable condition, choose a particular outcome. In Go-Design, decisions

can result in two types of outcome - they can either choose what to do now (i.e. immediately alter

the flow-of-control through the program), or they can modify the agent’s knowledge (which may

affect flow-of-control at a later point in time). For example, a decision which affects flow-of-control

could be “if the floor is dirty then clean it”, whereas a decision which affects knowledge may be

“if there is food on the floor then the floor is dirty”. Determining whether the floor is dirty is

an example of a perception. Thus, perceptions are a type of decision regarding the state of the

world. Perceptions ultimately rely on interpreting sensor data (and other knowledge) being about

something in the world. Note, there can be layers of dependency with perceptions - that is, we create

can new perceptions from existing perceptions, and errors of perception can propagate through this

chain of interpretation. Lastly, behaviours are skills which integrate other skills. For example, the

ability to “clean the floor” would require perception of dirt on the floor, decisions regarding such as

where and when to clean, other behaviours such as the ability to use a vacuum cleaner or mop, and

the physical actions to control the robot’s effectors.

Specifying how skills collaborate is achieved through the use of flows. As we have already dis-

cussed, there are two types of flows - control-flows and knowledge-flows. Control-flows are represented

by skill-transitions. Skill-transitions are conditions when flow-of-control should be passed from one

65

skill to another. Or in other words, skill-transitions can specify when a skill should stop, and when

another should start. Thus, identifying skill-transitions is a problem of action-selection2, i.e. the

problem of selecting when to do what. In contrast, knowledge-flows specify the modification and

sharing of knowledge (i.e. internal state and representation) throughout the system. In Go-Design,

knowledge is represented by concepts, percepts, and memories. Concepts are akin to the classes of

object-oriented programming - empty data structures, that when populated (or instantiated in the

case of object-oriented programming) are represented as a percept or a memory. Percepts are pro-

duced by perceptions, and represent the robot’s beliefs about the state of the world. Memories are

internal state - variables with values. Memories can be about anything - “what am I doing now?”,

“what day is it?”, or even procedural memory of how to do something. Thus, our concepts define

the structure of both our memories and our beliefs (percepts).

Go-Design uses a process of iterative decomposition to identify the set of skills and their transi-

tions required to perform the problem task. The problem task is called the context-level skill. This

process of iterative decomposition involves decomposing the context-level skill into a set of sub-skills,

and then decomposing each sub-skill into another set of sub-skills, until ultimately we have a set

of skills which map to the body’s capabilities. There are two main phases to the decomposition

process - basic-design and detailed-design. Basic-design involves constructing a skill architecture -

i.e. a hierarchical decomposition over the context-level skill into sub-skills. However, basic-design

does not involve identifying skill types, knowledge requirements, or required levels of groundedness

- this is the task of detailed-design.

4.5 Summary

In this chapter a brief introduction to Go-Design has been presented. We have discussed the mo-

tivations driving Go-Design, and the main units of abstraction, such the particular types of skills

(actions, decisions, perceptions, and behaviours), flows (control-flows and knowledge-flows), and

knowledge representation (concepts, percepts and memories). We have briefly discussed how Go-

Design employes a two stage process of iterative decomposition, which involves basic-design which

produces a skill architecture, and then detailed-design which identifies skill types, knowledge require-

ments, and groundedness requirements. However, we have not discussed the diagramming notation

(this is introduced in subsequent chapters), nor the process of context-level analysis - the process of

understanding the requirements of the problem task. It is context-level analysis to which we now

turn our attention.

2Note, the term “action-selection” does not refer to action skill-types, but rather the general problem when to do
what.

Chapter 5

Grounding Oriented Design:
Context-Level Analysis

Go-Design is a methodology for designing and grounding the “minds” of robotic agents - a vital step

towards the engineering of robotic agents. However, building grounded systems requires grounded

designers. As Go-Design is task-specific (i.e. it is concerned with designing a robot’s “mind” to

solve a particular problem), the first step of Go-Design is understanding the nature of the current

problem. In this chapter we begin with the first step of the methodology - a process called context-

level analysis1.

5.1 The Context-Level Skill

As the main units of abstraction in Go-Design are skills, the problem task and its requirements are

represented by the context-level skill. The term “context-level” is used to describe the mind’s required

capabilities, i.e. the entire behavioural and functional requirements (and hopefully capabilities) of

the system. The context-level skill can be likened to the context-level of a data-flow-diagram or the

root of a tree, as when the design process begins, the context-level skill is the starting point of an

iterative process of decomposition.

Consider designing a program to allow a robot to play soccer. We represent skills diagrammati-

cally using a rectangular box as illustrated in Figure 5.1. Note, the “0” written above Play-Soccer

indicates that it is the context-level skill - a diagramming notation borrowed from data flow diagrams

(DFDs)2. However, our skill diagram in Figure 5.1 is quite barren - in fact, it is quite meaningless.

What does “Play-Soccer” mean? In the absence of further elaboration, all meaning is derived
1Experienced developers of robotic systems may wish to skip this chapter, or return to this chapter after reading

subsequent chapters which cover the detail of Go-Design.
2Data Flow Diagrams are a common way of representing the flow of data through an information processing system.

66

67

Figure 5.1: A context-level skill diagram for Play-Soccer

through your (i.e. the reader’s) linguistic understanding of the phrase “play soccer”, and the knowl-

edge that a robot will be performing this task - but what kind of robot? In what environment? Why

do we want a robot to play soccer? And what style of soccer? How will the robot kick the ball?

And so forth... Thus, defining what we mean by Play-Soccer requires further elaboration.

Context-level analysis involves:

1. Identifying the objectives of the system. Why is the robotic system being built? Under-

standing the purpose of the system will help with both defining requirements and understand-

ing the intention behind ambiguous requirements.

2. Understanding the current capabilities of the system, including the capabilities pro-

vided by the robot’s existing hardware, such as sensors and effectors, and the existing software

capabilities which exploit that hardware.

3. Understanding the required capabilities of the system, i.e. what the robot(s) must do,

when must it be done, and where they must do it (i.e. the environmental operating conditions).

4. Understanding the potential capabilities of the system. In other words, what are

realistic (and feasible) expectations concerning what can be achieved, given the resource and

technological constraints relevant to the project? With robotics projects being an emerging and

developing research field, answering such questions is often not straightforward, and requires

understanding the nature of the robot or robots, e.g. sensory capabilities, effector capabilities,

computational capabilities (e.g. processing speed, available memory), and so forth.

5. Determining what needs to be, and can be, built to achieve the requirements, i.e.

identifying the gap between existing skills and required skills, as well as any development tools

that may need construction. This phase of analysis may cause an adjustment of the project’s

requirements based upon feasibility considerations arising from the project’s constraints.

In the following sections we present a set of guidelines, specifically tailored to the development of

control programs for autonomous robots, which can assist the designer in understanding the problem

task.

68

5.2 Objectives

“Objectives” concern why the robot’s mind is being developed. Reasons can vary - e.g. is the system

being built to better understand a topic being researched? Or is it being built to automate a process

to save time and money? The main objective in identifying objectives is so that the designer has

an understanding of what the project’s sponsor would want in uncertain or ambiguously defined

situations (ambiguous in terms of lack of requirement specification). There are two main steps:

1. Identify the context-level objectives. Context level objectives should be from the per-

spective of the project’s sponsor - what is the project’s sponsor hoping to achieve, and why is

the system being built?

2. Prioritise multiple objectives in order of importance. This process involves identifying

“trade-offs” or possible conflicts between different objectives, and then placing a value on their

relative importance. For example, safety during the robot’s operation versus the speed of the

robot’s operation.

5.3 Constraints

Constraints specify how requirements must be achieved, and thus must identified before design and

development commences. Constraints will affect the feasibility of any potential solution. There are

two main types of constraints that should be considered:

1. What are the project’s resource constraints? Resources include:

• Time, i.e. deadlines. When do requirements need to be completed by?

• Manpower. The number of developers, their level of skill, and their ability to work

cooperatively will influence what can be achieved.

• The robot’s computational resources. Algorithms in robotics need to be capable of real-

time processing.

• The robot’s sensory and effector capabilities will govern what can be perceived and the

physical behaviours that can be performed.

2. What are the project’s implementation constraints? Implementation constraints dic-

tate how problems are solved. In other words, do any particular implementation techniques

(e.g. algorithms) need to be used? For example, due to a particular research interest a Kalman

filter may need to be used instead of a particle filter for localisation3.
3Kalman filters and particle filters are two common techniques used for robot localisation.

69

5.4 Current Capabilities

The fact we need to build something indicates we lack particular capabilities. We address the

question of “what do we build?” by comparing the existing capabilities of the system with the

required capabilities of the system. The robot’s current capabilities are dependent upon both the

robot’s hardware, and the existing software for utilising that hardware.

5.4.1 The Robot(s)

Robots have capabilities and limits based upon their hardware, such as physical, sensory, communi-

cation and processing limits. For example:

• What sensors does it have? What are their physical characteristics? What aspects

of the world can they allow us to perceive? For example, cameras will have characteristics

such as field-of-view, distance sensors will have a limited range, and so forth. While many

characteristics will be contained in the robot’s manuals and supplied documentation, many

must be discovered through experimentation. For example, during our experiences the with

infrared distance sensor on the Sony AIBO, we mistakenly assumed we could use it to judge

the distance to the soccer ball, only to discover the distance sensor was highly unreliable with

moving and curved objects. Thus, the quality and nature of the robot’s sensors will affect the

difficulty of the perception problems faced by the robot.

• What effectors does it have? What are their physical characteristics? Robots have

physical limits, e.g. how much they can carry, how quickly they can move, etc.

• What are the processing capabilities of the robot? Does the processing take place

on-board or off-board? On-board processing will usually be limited, whereas off-board

processing will be less restrictive. Awareness of the robot(s)’ computational resources (mem-

ory and processing speed) is required for establishing the feasibility of different algorithmic

solutions.

• What is the robot’s battery life? This may affect the robot’s design and suitability for

the task, i.e. the need to frequently recharge the robot’s battery may not be well suited to

some tasks.

• What communication capabilities does the robot possess? For example, does the

robot posses serial communication, removable flash drives, wireless TCP/IP, and so forth.

The ability to communicate with the robot may affect how program revisions are uploaded,

how the robot is programmed, tested and debugged, how communication between robots in

70

multi-robot systems is performed, and the external resources that can be accessed (such as the

internet, the semantic web, and so forth).

5.4.2 Software

Hardware is of little use without software to control it. The robot’s current software will govern the

starting point for tackling the context-level problem. For example:

• How is the robot programmed? Does it have an operating system? In what language can

it be programmed? Does it have an API4? Does it have a development environment?

• What development and debugging tools are available? Software tools play a significant

role in the development of robotic software. For example, representations for sensory trans-

lation are representations which allow the designer to better understand the robot’s sensory

experience. For example, rather than displaying the robot’s camera image in terms of raw

data (a very large sequence of integers), it is more meaningful to convert the raw data to

an RGB image, as seen in Figure 5.2. Such tools provide essential infrastructure for robotic

development - if they do not exist they will need to be constructed.

• What existing perceptive capabilities does the robot have? What perceptive skills

can be reused from previous projects? Sensations describe the raw data from robot’s

sensors, whereas perceptions are interpretations of that data as being about something, e.g.

the numeric value attributed to a pixel representing a colour. Intelligent behaviour requires

understanding “what is going on in the world” - behaviours require perceptions to guide them.

• For each perceptual skill, how reliable are they? What is the nature of their error?

How is their performance affected by or related to environmental influences? How can they

be tested? Do visualisations need to be developed (e.g. writing software to stream the robot’s

vision so it can be displayed on a computer monitor). What are the consequences of error? For

example, what are the consequences of the robot experiencing false positives (hallucinations)

or false negatives (failure to detect the presence of an entity)? What are acceptable levels of

performance?

• What existing effector and behaviour capabilities does the robot have? What

physical actions can the robot perform? What “routines” can be used? For example, to make

a robot walk do we need to write a locomotion module or can we simply call a command

called “walk”? A skill design must map to actions the robot can already do, or that can be

developed.
4API - Application Programming Interface - a list of commands that can be used by the programmer.

71

• How reliable and accurate are the existing effector and behavioural capabilities?

For example, consider an inverse kinematics walking engine - does a command which instructs

the robot move 1cm forward really move the robot exactly 1cm forward? If not, what are the

consequences of such error and how can they be overcome?

• Identify the capabilities of any existing communication software. For example, are

there FTP servers? Is it a case of socket programming, using reliable TCP/IP streams, or some

other higher-level communication protocol? Communication capabilities are required not only

for multi-agent systems, but for programming and testing.

• What preexisting decision-making and planning processes does the robot have?

e.g. a reasoning engine, a skill-architecture, etc.

• What other resources can assist with the development process? For example, third

party tools, newsgroups, and access to domain experts.

5.5 Required Capabilities

In the previous sections we considered the project’s objectives (i.e. why we are building the robot

mind), as well as the existing capabilities of the robotic system. The next step is to consider the

requirements of the robot’s mind - in other words, what the robot’s mind needs to allow the robot

to do. As requirements are essentially “things” the robot should do, they form a specification

for how the robot should operate. When the design process begins (by decomposing the context-

level skill into sub-skills), each sub-skill has its own (sub)set of the context-level requirements that

contribute to achieving the context-level requirements. The context-level skill’s requirements serve

as a specification for the system - every skill developed should be done so to (at least partially) satisfy

a requirement. Eliciting the complete requirements for the project is thus imperative for designing

the system. We call the process of identifying what we are building requirements understanding.

Later, a requirements checklist is presented to assist the developer in identifying requirements.

5.5.1 Separating Requirements and Design

Context-level requirements are requirements that are identified before design begins, i.e. they are

usually stipulated by the project’s sponsor. In other words, the project’s sponsor will specify func-

tional goals for the system (i.e. what the robot should do), and the job of the designer is to specify

how the robot will achieve those functional goals. However (as discussed in Section 3.2.2.3), the

engineering of robot minds is complicated by the fact that specifying requirements (i.e. “what must

72

Figure 5.2: The raw data for an image (top) is quite meaningless to a human observer, whereas the
corresponding data converted to an RGB image portrays a different picture.

73

the system do?”) involves specifying a design (i.e. “how can it be achieved?”). This problem arises

because robots need to be explicitly told how to do absolutely everything. As answering the ques-

tion of requirements (i.e. “what must the system do?”) requires the design of a potential solution

(with a complete solution encompassing every specific behavioural detail for every relevant situation

the robot may encounter in the future) an inevitable consequence of this phenomenon is that the

design process will elicit new, and redefine existing, requirements. Therefore, approaches to the

software development life-cycle which involve a discrete, staged separation of requirements analysis

and design (e.g. as in the “waterfall” method5) are not appropriate when developing robot minds.

5.5.2 Eliciting Requirements - The Requirements Checklist

Eliciting requirements is an ongoing process - design helps elicit requirements. Go-Design provides a

set of prompts, called the requirements checklist, to assist the designer in eliciting the requirements

of the project. Not all items of the checklist will be relevant to any particular project, nor is the

list exhaustive. When defining particular requirements the designer should attempt to quantify (if

possible) a performance benchmark.

The requirements checklist is as follows (note - a concise version of this checklist is contained in

the Go-Design Step-By-Step Guide in Appendix A):

1. Describe the behaviour of the robotic system in as much detail as practically

feasible. System behaviour can be described in a number of ways, such as:

• By writing a narrative, i.e. a textual description.

• By creating a simulation, i.e. a virtual model of how the embodied system should behave.

• Through the use of illustration and diagrams.

• By developing a prototype, i.e. an approximation of the desired behaviour is created, but

lacking in certain areas. In this case, the specific deficiencies of the prototype should be

identified.

2. Specify behavioural requirements. Behavioural requirements are measurable behavioural

(physical) performance targets. Therefore, from the behavioural description produced in Step

(1), identify specific measurable aspects of the system’s performance that should be achieved.

For example, “the robot should be capable of using its robotic arm to grasp soft-drink cans”,

or “the robot should be capable of moving to and from the rooms of a single story house, safely

avoiding obstacles and collisions, upon verbal command”.
5The waterfall approach is a long-standing, common approach to the development life-cycle in which there are

discrete, sequential development stages, e.g. requirements analysis, design, implementation, testing, and maintenance.

74

3. Identify perceptual requirements. Perceptual requirements are performance targets re-

garding the detection of particular events and/or aspects of the world. The behavioural de-

scription and behavioural requirements produced in previous steps will contain elements of the

environment that must be perceived for successful task completion. Where possible, identify

the sensors which can be used for the particular perception problem, and acceptable levels of

error, such as acceptable levels of false positives and false negatives.

• What physical objects need to be perceived? e.g. a soccer playing robot will be required

to perceive the soccer ball;

• What attributes of those physical objects need to be perceived? e.g. the location of the

soccer ball;

• What events need to be perceived? Events are relevant and significant changes in the

state of the environment that should be detected for the purposes of decision-making.

For example, in robotic soccer events may include a goal being scored, losing possession

of the ball, and so forth.

4. Identify locomotion requirements (movement). Locomotion requirements arise from

behavioural requirements. e.g. how is the robot required to move around the environment?

For example:

• Directional requirements. What are the directional requirements? Does the robot only

have to move backwards and forwards? Turning? Strafing? etc.

• Speed requirements. How quickly should each type of movement be capable of being

executed? e.g. straight-line speed? turning and rotational speed?

• Stability requirements. How stable does the robot need to be while moving?

• Terrain. Is the robot’s movement requirements related to different types of terrain? What

is the nature of the terrain the robot is required to move over? (or move through, in the

case of autonomous ships, planes, helicopters, submarines, etc).

• Obstacle avoidance and path planning requirements. What hazards in the environment

may need to be avoided?

5. Identify any special actions or movements. For example, the ability to move an object,

or the ability to get up after a fall (in the case of legged robots).

6. Identify Communication Requirements. Identify how, and what, the robot(s) communi-

cate with:

75

• Developers. Developers need to “communicate” with their robots for the purposes of

uploading program revisions, teleoperation, debugging, and testing, e.g. “the data link

needs to support a sufficient rate to send command sequences, and to get data and

telemetry back”.

• Users. For example, a “security robot” needs to report the presence of intruders.

• Other robots. In a multi-robot system, do the robots need to communicate, and if so,

what do they need to communicate and how will they transmit such information?

7. Identify Environment Requirements. Where is the robot or robots expected to perform

their tasks, and when they perform those tasks in what state will the environment be? Under-

standing the nature of the environment allows the developer the best chance of anticipating

the future environmental conditions in which the robot(s) will operate. The main problem

areas are:

• Identifying change. That is, what dynamic aspects of the environment might impact upon

the performance of the system. For example:

– Some physical objects may move location, effecting locomotion and path planning

(e.g. obstacle avoidance).

– Some physical objects may change appearance or shape, possibly effecting perception

and action.

– Lighting may change, affecting vision systems.

– Background noise may change, affecting auditory perception.

• Identifying aspects of the environment that can be controlled and/or modified to assist

the robot(s). For example, adding fixed landmarks to assist with localisation.

• Identifying physical hazards to the welfare of the robot(s) - e.g. a staircase poses a hazard

for a wheeled robot.

• Identifying physical boundaries and limits - are there limitations as to where the robot

should be allowed to go?

8. Identify development or debugging tools which need to be built. For example:

• Does a programming environment or programming language need to be created? Are the

current means for programming the robot efficient and expressive enough? Can software

be run off-board, offering the benefits of established development environments, such

as integrated debuggers? For example, with the Sony AIBO, programs are written in

C++. However, making program modifications requires rebooting of the robot - a process

76

which can take several minutes. Consequently, to improve programming efficiency, many

RoboCup teams have developed run-time interpreters for scripting languages such as Perl

and Python, thus enabling programs to be modified without wasting the time required

to reboot the robot.

• What representations for sensory and perceptual translation need to be built? For example,

tools for streaming vision data.

• What representations for state representation need to be built? For example, visualisations

of the robot’s perceived location and orientation, or display of the robot’s current plan.

9. Are there any future requirements? In other words, requirements which are not part of

the project’s current scope, but should be allowed for in terms of building an extensible design.

Note - there are many other ways of categorising requirements, e.g. learning requirements, safety

requirements, conceptual requirements, decision-making requirements, and so on. The categories

presented in this checklist are provided as prompts and are not exhaustive nor complete.

5.5.3 Requirement Templates

Go-Design employs requirement templates for documenting requirements. An example requirement

template is shown in 5.3. For each requirement the designer should specify:

1. What the robot should do;

2. Why the robot should do it, i.e. the need ;

3. The nature of any constraints on how the requirement should be achieved, e.g.

“the robot must be able to localise, but the localisation algorithm must use a Particle Filter”;

4. The importance or priority of the requirement, e.g. System Critical/Essential, Desir-

able, Luxury, etc.

5. Performance dimensions and metric, i.e. how attempts to satisfy the requirement can be

measured; and lastly,

6. The required performance standard in terms of measurable performance dimensions.

77

Figure 5.3: Requirements for Movement

78

5.6 Conclusion

This section presented techniques to help the designer understand the problem at hand. In the

following sections we turn our attention to structured processes for designing solutions to robot

control problems. Note that this process is ongoing throughout the life of the project. Understanding

requirements requires design, which can lead to reconsideration of requirements.

Chapter 6

Grounding Oriented Design:
Part I - Basic-Design

In the previous chapter we focused on context-level analysis - i.e. developing an in-depth understand-

ing of the problem we are trying to solve. We now turn our attention to the first step of the design

process - designing a skill-based architecture to solve the required task. In subsequent chapters we

will then demonstrate how the skill-based architecture can be used to construct a detailed-design

which focuses not only on skills, but on decision-making and knowledge representation.

6.1 Introduction

Go-Design is a methodology for designing and grounding representations for robotic agents. Central

to Go-Design are “skills” - units of encapsulated intelligence. Go-Design involves iteratively decom-

posing a complex problem (the context-level skill) into a collection of simpler, collaborating skills.

This methodology has two main components:

• Processes, guidelines and techniques for designing a robot’s mind in terms of skills.

• A modeling notation for representing a mind’s design through skill diagrams.

For a more detailed overview of Go-Design readers are referred to Chapter 4. In this chapter

we focus on designing a skill-based architecture, from which a detailed-design1 can be formulated

(Chapter 7).

1“Detailed” refers to a pseudo-code level of detail.

79

80

6.2 Skills

The things a mind can do are called skills. Skills are encapsulated, task-based abilities; they are

labels we attach to processes which do or achieve something. Skills can be anything - the ability

to see, to throw and catch a ball, or to even “think”. We could have called “skills” many other

names, such as “abilities”, “capabilities” or “things a robot can do”. Skills can use other skills - for

example, being able to “do the grocery shopping” requires the ability to “drive the car” coupled with

the ability to “find the shopping centre”, and then after arriving at the shopping center, the ability

to “find a car park”, and to “find the grocery shop inside the shopping center”, and then (once all

the previous skills have been accomplished successfully) there is the art of “finding and controlling

a shopping trolley”, and so forth - intelligent behaviour requires a rich assortment of skillful skills.

6.3 Skill Collaboration

A collaborating set of skills can accomplish more than any of the individual skills alone. For example,

the ability to “do the grocery shopping” is built (and reliant) upon a set of collaborating “subskills”

such as “drive the car”, “find the shopping centre”, and so forth. The grocery shopping example

illustrates three key types of skill collaborations (or “interactions”) that we use to design robot

minds. Firstly, there are skill sequences - skills that operate sequentially over time, one after the

other, like a chain. For example, “1. Find the car; 2. Start the car; 3. Drive the car to the shops”,

and so forth. In a skill sequence the term skill-transition is used to describe when one skill stops and

another starts. Secondly, there are concurrent skills, i.e. skills that operate at the same time - for

example, the ability to drive the car while also being able to simultaneously plan (and replan) the

best route to the shops. Lastly, there are skill decompositions. Skill decompositions are the labels

we attach to hierarchical groups of skills that do something as a whole. In other words, skills are

composed of subskills. For example, some of the subskills we identified of “do the grocery shopping”

included “drive the car”, “finding and controlling a shopping trolley”, and so forth. For each of these

subskills, they are, in turn, also composed of subskills. For example, the ability to “drive a car”

requires skills such as “perceive and obey road signs and traffic laws”, while the ability to perceive

road signs in turn requires the ability to interpret and discriminate certain collections of shapes and

colours in the visual stream as being particular meaningful road-signs. Thus, generally, for every

human behaviour there is a mountain of detail that we (designers of robot minds) either ignore or

take for granted - until we try and automate such processes artificially.

81

6.4 Skill Diagrams

6.4.1 Design Considerations

The design of skill diagrams was motivated by the need to capture, using just one style of diagram,

a number of key aspects of both software and grounding design. These key aspects include:

• Modularity of design - just as class-diagrams model the classes of an object-oriented design,

skill diagrams illustrate the skills of a grounding oriented design.

• The hierarchical, layered nature of software designs, or conversely, the decomposition of the

context-level skill into subskills.

• Flow-of-control - skill diagrams represent how control-flows throughout the control program

(including both concurrent and sequential flows), and thus, the consequences of decision-

making.

• The events which cause control to pass from one skill to another. These events are called

skill-transitions.

• The perceptions and decisions required to detect and recognise skill-transitions. These deci-

sions are called transition-conditions.

• The perceptions and decisions required to guide behaviours.

• The knowledge (i.e. representations) required to make decisions, and how that knowledge is

used throughout the entire system.

• Lastly, the decisions required to maintain representations with respect to their referents - the

problem of reference.

In this Chapter we focus on “basic-design”, which involves using skill diagrams to model a skill

architecture. A skill architecture illustrates the skill decomposition for a given problem, and the

skill-transitions (events) which result in control being passed from one skill to another. In Chapter

7 the more detailed aspects of skill diagrams are presented (such as perceptions, decisions, and

knowledge).

6.4.2 The Basics

Figure 6.1 provides a legend which describes the elementary notation used in skill diagrams, while

Figure 6.2 illustrates a simple skill diagram for the skill “Do-Grocery-Shopping”.

82

Figure 6.1: Skill Diagram Legend.

83

Figure 6.2: Shopping Skill Diagram.

6.4.2.1 Skill Naming

Skills are represented with rectangular boxes, with the name of the skill written below a numeric

identifier. The first letter of each word in a skill name should be capitalised, with the words of a

skill’s name separated by a hyphen. A skill’s name should be unique.

6.4.2.2 Numeric Identifiers

The numeric identifier describes how a particular skill relates to other “parent” skills, and thus how

a skill relates to other skills in the “skill network”. For example, if a skill’s identifer is “1”, any

subskills (other skills that are used in the skill’s design) would be labeled as “1.1”, “1.2”, and so

on. Thus, a skill with the numeric identifier “1.2.1” forms part of the implementation of skill “1.2”,

with skill “1.2” forming part of the implementation of skill “1”, and skill “1” forming part of the

implementation of the context-level skill (skill “0”). Note, while a numeric identifier is unique (in

that no other skill will share the same numeric identifier), it is possible for the same skill to be reused

in different diagrams. Therefore, as the same skill could be reused by many different skills, a skill

could appear in numerous skill diagrams, each time possessing the same skill name, but a different

numeric identifier. Thus, the main purpose of a numeric identifier is to represent where a skill sits

in relation to other skills in the “skill network”.

84

6.4.2.3 The Decomposition Box

The purpose of the decomposition box is to represent which particular skills (and later, in detailed-

design, also representations) form part of a skill’s design, and thus decomposition. The box need

not be a “box” - indeed, any shape encompassing the relevant skills and representation which form

part of a skill’s decomposition is sufficient. Note - whether the label for a skill-transition falls inside

or outside a decomposition box is irrelevant. The decomposition box is most useful when drawing

multiple skill diagrams on the same page or space, as it clearly groups the skills and representations

which belong to that skill’s design.

6.4.2.4 Flow-Of-Control

Flow-of-control is represented through the use of skill-transitions, with skill-transitions represented

with an arrow. Skill-transitions can have transition-conditions, which are testable conditions which

signify when one skill should stop and another should start. If a skill-transition does not have a

transition-condition, this implies that the skill-transition occurs automatically (i.e. by default). We

represent transition-conditions by adding a caption (in lowercase) to the arrows between skills on a

skill decomposition diagram. Also note that a black-dot with a circle around it is used to represent

the skill’s completion (as per UML state diagrams). Flow-of-control begins with the parent skill

- thus, in Figure 6.2 flow-of-control begins with Do-Grocery-Shopping. A skill diagram can have

multiple flow-of-control end points (terminators), but flow-of-control must always start with the

parent skill. Lastly, concurrent skills are represented by having multiple transitions active at the

same time. For example, consider that during Collect-Groceries we may need to be able to both

find the particular groceries we need, while also pushing the shopping trolley at the same time.

Figure 6.3 illustrates how to represent concurrent skills.

6.5 The Design Process

In the previous section we discussed how skills interact, and the basics of representing skill designs

in skill diagrams through the “grocery shopping” example. The example illustrates how skills col-

laborate to form new skills, and that, in designing robot minds we aim to build not only a set of

skills, but to also define the interactions between those skills. The process of “breaking up” (or sep-

arating) a skill into a number of other cooperating subskills is a process of decomposition. The term

iterative decomposition refers to the process of decomposing each of the subskills into another set of

subskills, and then in turn decomposing each of the new subskills into subskills, until ultimately we

have a set of skills which map to either the robot’s existing capabilities, or to capabilities that can

85

Figure 6.3: The diagrammatic notation for representing concurrent skills. Move-Trolley and
Find-Groceries operate concurrently.

be developed. This process of iteratively decomposing a robot control problem results in layered,

hierarchical system designs.

The first stage of Go-Design, “basic-design”, provides a set of guidelines for constructing a skill

architecture. Designing a skill architecture involves:

1. Decomposing the problem (the context-level skill) into subskills.

2. Identifying and defining the transitions between skills.

Throughout the remainder of this chapter we will discuss the guidelines the methodology offers

to assist the developer through this design process. The example we will use in this chapter is

designing a robot’s mind which allows the robot to find and kick a ball into a goal on a soccer field

- a simpler, more feasible task than building a robot capable of performing grocery shopping.

6.5.1 The Context-Level Skill

The first step in designing a robot’s mind is to identify the context-level skill. We use the term

context-level skill to describe the mind’s required capabilities, i.e. the entire behavioural and func-

tional capabilities of the system. The context-level skill can be likened to the context-level diagram

86

of a data-flow-diagram or the root of a tree - the context-level skill is the starting point for the

iterative decomposition process.

6.5.1.1 Notation: Context-Level Skill

To identify the context-level skill, the skill’s numeric identifier is set to “0” (as per the convention

used in data-flow-diagrams). Consider designing a robot whose sole purpose is to kick goals on a

soccer field. The context-level skill for such a robot is displayed in Figure 6.4.

Figure 6.4: A context-level skill diagram for a goal-kicking soccer robot.

6.5.2 Iterative Skill Decomposition

The context-level skill represents the objectives and requirements of the system, the robot, the

environment, and the robot’s current sensory and effector capabilities2. The designer must now

decompose the context-level skill into a set of implementable, collaborating skills. Decomposition

is a top-down process which involves breaking a large problem into a set of smaller (and hopefully

simpler) problems. Iterative decomposition is a process of, in turn, breaking each new skill down

into new skills, which are ultimately capable of being implemented. Decomposition ends when we

have a design in terms of (feasible) skills the robot can do.

6.5.3 Identifying Skills

The first step in problem decomposition is to identify a skill sequence - a set of steps, some of

which may run concurrently, that achieve the agent’s objectives. The context-level skill diagram

in Figure 6.4 reveals little of how the robot should kick a goal, or how the robot could kick a

goal, or when it should even stop kicking goals. Skill decompositions are achieved by the designer

embodying themselves in the problem, and thus asking “what would I do in the same situation?”.

When identifying subskills, it is important to remember skills do things, and thus a skill name should
2Of course, this information is not contained in the skill diagram, but is identified through context-level analysis -

see Chapter 5.

87

always include a verb. The aim is to identify subskills that conceptually help solve the problem (i.e.

the current skill). The following steps can assist the designer in identifying skills:

• Look for verbs - skills “do something”.

• Look for nouns - the objects that are having something done to them (by the verb), e.g. “drive

the car”, “kick the ball”.

• Skills should be named by their core and essential functionality, i.e. their objective, for example

“Get-Ball” isn’t “Walk-To-Ball” because we don’t want to limit or restrict how we might

get the ball. In other words, name skills in terms of what they achieve, rather than how they

achieve it.

• Consider if each subskill should be generalised (i.e. abstracted). For example, should “Get-Ball”

be “Get-Object”? In answering such questions the developer must weigh up the benefits of

reuse versus the benefits of specialisation. In our current example, as the only object our

robot will ever get is a ball, there is no need to generalise. Also, for an abstraction such as

Get-Object to be created, a parameter to represent the type of object to be “got” needs to

be created. These topics are discussed in more detail in Chapter 7.

6.5.3.1 Example

An example skill sequence for the first decomposition of Kick-Goal can be seen in Figure 6.5. Note,

however, that a skill can be decomposed in different ways. For example, compare Figure 6.5 with

Figure 6.6. In Figure 6.6 Find-Ball is a subskill of Get-Ball, rather than a subskill of Kick-Goal.

While there is no provably “right” way of decomposing a skill, the different approaches presented

in Figures 6.5 and 6.6 have different advantages and disadvantages. For example, in more complex

diagrams (complex in that there are many skills and many transitions between those skills), “hiding”

a skill by encapsulating it inside another (as in the case of Find-Ball being a subskill of Get-Ball in

Figure 6.6) can make diagrams conceptually simpler. However, this approach is not suitable if a skill

needs to interact with other skills at the same level of the skill tree - for example, if Find-Ball and

Kick need to interact directly, then placing Find-Ball as a subskill of Get-Ball is not appropriate.

6.5.4 Skill Templates

So far we have only considered how to decompose a skill into subskills, and how to represent this

decomposition using a skill diagram. The next step in the diagramming process is to identify

88

Figure 6.5: A skill sequence for kicking a goal. The skill diagram lacks transition-conditions.

skill-transitions and their transition-conditions. However, to identify and model skill-transitions ef-

fectively, we need to identify what each skill should achieve (each skill’s objectives and requirements),

and when each skill should operate (i.e. the state of the world when the skill’s use is appropriate;

its “usage context”). To capture such information, Go-Design provides skill templates - documents

which prompt the designer to identify key aspects of each skill. While many aspects of each skill’s

nature are implicit in their naming (e.g. the objective of Get-Ball is obviously “to get the ball”),

and thus also implicit in the mind of the designer, skill templates provide a means for explicitly

documenting, in detail, aspects of each skill which can not be easily captured in a skill diagram.

Explicitly representing information such as each skill’s objectives, requirements, and performance

criteria is invaluable in team environments, when different developers are developing different, but

inter-related and inter-dependent skills.

Skill templates describe:

• The objective of the skill - i.e. why is the skill being built? In other words, for what

context-level requirement is it being built to (at least partially) satisfy?

• A description of the skill - how will the skill achieve its objective?

• The skill’s entry-conditions and exit-conditions - i.e. when the skill should and should

not operate - imperative for establishing skill-transitions and their transition-conditions.

89

Figure 6.6: An alternate skill diagram for kicking a goal. Find-Ball is now a subskill of Get-Ball.
The skill diagram lacks transition-conditions.

90

Figure 6.7: A skill template.

91

Figure 6.8: Skill template for Get-Ball

• The constraints of the skill - restrictions and limitations governing how the skill is imple-

mented.

• Performance dimensions and metric for assessing the skill’s performance.

• The required performance standard, described in terms of the performance dimensions

and metric.

• Identification, where possible, of any dependent skills.

A skill template is displayed in Figure 6.7.

6.5.4.1 Example

Figure 6.8 contains an example skill template for Get-Ball.

92

6.5.5 Identifying Skill-Transitions

Decomposing skills into subskills is meaningless without defining how those skills interact. Skill-

transitions represent relevant and important events, which we also term “whens”[25]. Thus, identi-

fying transition-conditions involves identifying when one skill should end, and when another should

start. For example, in Figure 6.5 there are no transition-conditions between any of the subskills.

Thus, in Figure 6.5, when should Find-Ball stop and Get-Ball start? When should Get-Ball

stop and Aim-At-Goal start? When should the robot Kick? And how do we know when the kick

is completed? Thus, we need to define the conditions for which each skill terminates and/or passes

control to another (i.e. flow-of-control). Simply put, there are two types of transition condition -

entry-conditions and exit-conditions, with the exit-condition of one skill being the entry-condition

for another. When identifying skill-transitions, the designer should note that every skill (except for

the context-level skill), should have at least one entry-condition (else, how does it start?).

6.5.5.1 What-If Analysis

It is imperative that appropriate skill-transitions are identified to design robust robot skills, i.e. so

that the robot performs the “right” skill at the “right” times. Therefore, identifying skill-transitions

is related to the problem of action-selection - of when to do what [25]. What-if analysis is a brain-

storming approach in which the designer considers possible or potential situations or scenarios that

may affect system performance. What-if analysis involves the designer hypothesising about relevant

potential events, i.e. “what happens if ...?”. Failure to identify all relevant skill transitions can

result in the robot failing to respond appropriately to real-world events, negatively effecting the

robot’s performance. For example, the robot may perform skills at inappropriate times, get stuck in

endless inappropriate repetitive loops, or become “frozen” in a particular state (e.g. because none

of the exit-transitions for that particular skill hold true). Thus, what-if analysis is a crucial aspect

of grounding by design, in that the designer is responsible for making decisions regarding relevant

events, and later in detailed-design, decisions regarding how to perceive such events. The poorer an

agent’s grounding, the more likely the need for incremental code-and-fix, trial-and-error, revisions

of the robot’s software due to unanticipated agent-environment interactions. To help avoid this, a

“what-if analysis checklist” is presented in the following subsection to assist the designer in eliciting

relevant skill-transitions.

6.5.5.2 What-If Analysis Checklist

Qualitative assessments of how a skill can terminate can assist in identifying skill-transitions. For

example:

93

• What happens if the skill is successful? Consider the skill’s objective or objectives -

if the objective or objectives are achieved, what should happen next? Should there be an

exit-condition to another skill?

• What happens if the skill is unsuccessful? Skills will not always achieve their objective.

Robust robot behaviours are heavily reliant upon the designer identifying all the different ways

each skill can fail, and designing a strategy to cope with these situations. Common types of

unsuccessful exit conditions include:

– What happens if the skill “times out”? In other words, can the skill take too long

to achieve its objective, and if so, what should happen?

– What happens if a skill’s entry-condition is no longer true during the skill’s op-

eration? When designing skills, the designer should consider what knowledge is required

to execute that skill (note - in Chapter 7 representation design is covered in detail). What

should happen if a skill, once started, lacks insufficient knowledge to complete the skill?

For example, for our goal-kicking robot to be able to aim at the goal (i.e. Aim-At-Goal),

the robot must possess knowledge of the goal’s location, relative to the robot. What

happens if this knowledge is not available? Is it the responsibility of Aim-At-Goal to find

the goal? Likewise, what happens if during the execution of Get-Ball knowledge of the

ball’s location becomes uncertain or unknown?

– What happens if new events render the skill’s continued operation irrelevant?

There are a large (probably infinite) number of potential events that could occur which

could make any (or all) of the skills’ continued operation irrelevant (e.g. the robot could

physically break-down, or the sun could explode) - the task of the designer is to use their

understanding of the domain to identify likely events. For example, what happens if our

soccer-playing robot falls over (e.g. due to an unstable walking gait or a knock from

another robot) during the execution of any of the skills?

6.5.5.3 Examples

• What happens if the skill is successful? Figure 6.9 displays a revised skill diagram

for Kick-Goal in which transition-conditions are added for each of the skill-transitions which

reflect each skill’s objective (success conditions).

• What happens if the skill “times out”? Figure 6.10 displays a revised skill diagram which

incorporates time-out conditions for the skills Find-Ball and Aim-At-Goal. Our goal kicking

robot will now simply stop if either Find-Ball can not find the ball (i.e. unable-to-find-ball

is true), or Aim-At-Goal can not find the goal (i.e. unable-to-find-goal is true).

94

Figure 6.9: A skill sequence for kicking a goal with “successful” transition-conditions.

Figure 6.10: A skill diagram for Kick-Goal with the new “unsuccessful” transition-conditions
unable-to-find-ball and unable-to-find-goal.

95

Figure 6.11: A skill diagram for Kick-Goal after the addition of the “unsuccessful” skill-transitions
ball-possession-lost and ball-lost.

• What happens if a precondition for the skill’s operation is no longer true? Con-

sider the transition-conditions ball-found and have-ball in Figure 6.10. The condition

ball-found implies that the robot knows where the ball is, and have-ball implies the robot

has control or possession of the ball. What happens if the whereabouts of the ball becomes

unknown during Get-Ball? Or alternatively, what happens if possession of the ball is lost

before Aim-At-Goal is completed? Figure 6.11 contains two new skill-transitions to cater for

these situations - ball-lost passes control from Get-Ball to Find-Ball if knowledge of the

ball’s location becomes too uncertain or unknown, while ball-possession-lost passes con-

trol from Aim-At-Goal to Find-Ball should control of the ball be lost while aiming at the

goal.

• What happens if new events render the skill’s continued operation irrelevant?

In robotic soccer collisions with other robots can often knock a robot over (onto its side),

rendering all other skills irrelevant until the robot is back on its feet. Figure 6.12 has a new

96

Figure 6.12: Kick-Goal, now with the ability to Get-Up after falling over.

skill - the ability to Get-Up after a fall.

6.5.5.4 Skill-Transitions - Summary

In this section we have seen how to add skill-transitions and “basic” transition-conditions to a skill

diagram. The transition-conditions, however, are lacking in detail, being merely labels represent-

ing real-world events to the designer. Thus, more detail for transition-conditions is required - in

particular, processes for testing the truth value of these transition-conditions need to be defined.

For example, what does ball-found, have-ball, facing-goal and ball-kicked mean? Is the ball

“found” if there are a few pixels of the appropriate colour in the robot’s image? At what point does

the robot “have” the ball? And is the robot “facing” the goal if the goal is a few degrees to the

robot’s left or right? Thus, defining the implementation of transition-conditions is required to define

what is precisely meant by a transition-condition. This topic will be covered in detailed-design in

Chapter 7.

97

Figure 6.13: Get-Up separated from Kick-Goal.

6.5.6 Design: Keeping it Simple

As we can now see, our diagrams are now starting to get a little complicated (especially that in

Figure 6.12). To keep diagrams simple, there are two main techniques that can be employed, both

of which involve simplifying existing skill diagrams by creating new, smaller skill diagrams.

6.5.6.1 Layering

Consider Figure 6.12. Observe that every skill in the skill diagram has the transition fallen-over

to the skill Get-Up. This indicates that the Get-Up ability should be triggered whenever the robot

falls over, regardless of which particular skill is currently being performed. Thus, Figure 6.12 can

be simplified by creating a second skill diagram in which the need to Get-Up after falling over will

override any currently operating skills.

Figure 6.13 displays a new skill diagram in which a new skill, Kick-Ball-At-Goal, encapsulates

all the skills and skill-transitions contained in Figure 6.12, except Get-Up and its related skill-

transitions. In Figure 6.13, if the robot ever falls over during the process of kicking the ball it

will Get-Up before continuing. Figure 6.13 can be further elaborated upon, by creating a new skill

Perceive-Posture, which is responsible for determining if the robot has fallen-over or is upright,

as shown in Figure 6.14. In this skill diagram, there exists a skill-transition without a transition-

condition (from Kick-Ball-At-Goal to Perceive-Posture) - the absence of a transition-condition

indicates that the transition-condition is always true, and thus every time (i.e. every “frame” or pro-

cessing cycle) Kick-Ball-At-Goal executes, Perceive-Posture is called. Thus, Perceive-Posture

98

Figure 6.14: Perceive-Posture.

acts like a reflex, triggering the Get-Up skill whenever the robot has fallen-over.

Lastly, Figure 6.15 displays the skill diagram for Kick-Ball-At-Goal - the new skill formed from

the separation of Get-Up from Kick-Goal.

6.5.6.2 Amalgamation

Another technique to keep diagrams conceptually simple is to amalgamate skills, thus creating new

skill diagrams, but with each skill diagram containing fewer skills. For example, consider Figure 6.16.

The skills Aim-At-Goal and Kick are amalgamated to create a new skill Aim-And-Kick, thus reduc-

ing the number of skills by one, and hiding the skill-transition facing-goal within Aim-And-Kick.

Likewise, Figure 6.17 displays the further simplification of Kick-Ball-At-Goal through the amal-

gamation of Find-Ball with Get-Ball, which again reduces the number of visible subskills by one,

and also hides the transitions ball-found and ball-lost within the new version of Get-Ball.

99

Figure 6.15: Kick-Ball-At-Goal - now without Get-Up.

100

Figure 6.16: Simplified Kick-Ball-At-Goal (top) with Aim-At-Goal and Kick amalgamated into
Aim-And-Kick (bottom).

101

Figure 6.17: Further simplified Kick-Ball-At-Goal (top) with Find-Ball and Get-Ball amalga-
mated (bottom).

102

6.6 Summary

The notation and processes we have introduced in this section (skills and skill-transitions) enable us

to create skill-based architectures for solving robot control problems. The skill architectures allow

the designer to model hierarchical, modular, capability-based skills, and the interactions between

these skills through event-based skill-transitions and transition-conditions. As illustrated in Figure

6.14, skill-transitions provide a means for further decomposition of skill diagrams, through the iden-

tification of perceptions to detect the events represented by transition-conditions. In Chapter 7 we

turn our attention to detailed-design - a process which involves identifying skill types, representation,

and knowledge-flows and implementation strategies in terms of pseudocode.

Chapter 7

Grounding Oriented Design:
Part II - Detailed-Design

In the previous chapter we considered basic-design - a set of processes which allow the designer to

construct a skill architecture, consisting of skills and skill transitions. While a skill architecture can

play a role in the high-level design of an autonomous robotic system, for the purpose of implementing

a software solution more detail is required. Thus, a detailed-design is needed which provides a

blueprint for translating a skill architecture into software.

7.1 Detailed-Design

In order to design a grounded agent, the designer must understand both the concepts the agent needs

to “understand”, and the decision-making processes which rely upon those concepts. In detailed-

design, we consider how to identify the knowledge, concepts, perceptions and decision-making pro-

cesses required for a robot’s mind to control the robot appropriately. In particular, detailed-design

allows the designer to produce a grounded system design which can be easily implemented (i.e. a

pseudocode level of detail). Detailed-design involves identifying each skill’s “type”, the requirements

of each skill (including groundedness), the representation each skill requires (concepts, percepts and

memories), the interfaces between skills, and the dependencies between skills through the use of

flows.

In this Chapter we will introduce these concepts, and will continue the refinement of the examples

presented in the previous chapter.

103

104

7.2 Skill Types

The first step of detailed-design is to identify each skill’s type. Go-Design differentiates between

four types of skills - decisions, actions, perceptions and behaviours. Every skill falls into one of

these categories. Collaborations between these different skill types are used as the starting point

in designing and modeling the required decision-making and representation for the robot control

problem.

7.2.1 Decisions

Decision-making is at the crux of intelligent behaviour, with decision-making playing a role in both

the development of robotic minds (i.e the “design-time” decisions a developer makes about a robot’s

mind), and during the operation of that robot’s mind (i.e. the “run-time” decisions a robot makes

autonomously). Decisions range from high-level (even abstract or profound) reasoning (e.g. “what

happened?”, “what should I do now?”, “why am I here?”, etc) to, at their lowest-level, simple “if

statements” in code (e.g. “if x is true then do a, else do b”). Go-Design concerns two main types of

decisions, namely control management and knowledge management. Control management decisions

involve choosing between skill-transitions, while knowledge management concerns the manipulation

of representation (internal state).

While many decision-making processes in software can be relatively simple (e.g. an if-statement),

many decisions can be decomposed (or alternatively are composed of other decisions). For example,

consider a soccer playing robot, in possession of the soccer ball, that must decide “should I kick

now?” - such a decision may be dependent upon the evaluation of other decisions such as “can I

see the goal?”, “am I facing the goal?”, “are there any robots obstructing my shot at goal?”, and so

forth.

7.2.2 Actions

Actions are commands which:

1. Execute without perception.

2. The developer can assume to be deterministic - that is, the designer can assume they “work”

(but of course they might not, due to wear-and-tear or damage, etc).

Simple examples of actions include setting the boolean states of actuators such as an AIBO’s ears

(up or down), an AIBO’s mouth (open or shut), or turning a light on or off. Other examples include

setting the joint angle of a robot’s limb, or playing a particular audio file, and so forth. In Go-Design,

105

actions are not limited to those that have physical effects upon the world - they can also be virtual

or software-based (e.g. saving a file to disk, or sending an email). Ultimately, a skill decomposition

must map to actions the robot can do. Note, while actions may be perception-less, many actions

can be composed of both decisions and other actions. For example, an action which enables a legged

robot to “walk one step” could be decomposed into a sequence of actions which sets the angle of

each leg over time. The term primitive-action refers to actions that can not be decomposed, e.g.

actions provided by the robot’s programming interface. As actions have no perception capabilities,

actions can not evaluate their own performance. Thus, if evaluation of an action’s performance is

required, it must be provided by another type of skill.

7.2.3 Perceptions

Perceptions are decisions made about the state of the world. We use the term perception to refer to

the process of perceiving, and the term percept to refer to the memory (the persistent state) of that

perception. We make the distinction between decisions and perceptions (a type of decision) due to

our concern with grounding. However, perceptions rely upon interpreting both sensory information

and existing knowledge to make their decisions regarding the state of the world.

7.2.3.1 Sensations versus Perceptions

Sensations are raw, unprocessed data from the robot’s sensors, such as a stream of images from

a camera. Thus, perceptions and sensations differ in that perceptions involve making decisions

and inferences concerning the state of the world in response to the “value” of sensations, whereas

sensations represent raw, uninterpreted input to the robotic system. For example, consider a pixel

in a robot’s camera. That pixel will have a triplet, numeric value (e.g. “98, 67, 45”). The numeric

value of the pixel is a sensation, but interpreting that numeric value as representing a colour (e.g.

“red”) is a perception.

7.2.4 Behaviours

Lastly, behaviours are complex processes which can incorporate all the different types of skills, such

as the ability to “drive a car”. Thus, a behaviour can always be decomposed. During the design

process, often the “behaviour” label is given to skills we haven’t designed how to do yet, as all

behaviours can ultimately be decomposed into decisions, perceptions and actions.

106

7.3 Knowledge Representation

Skills are processes - that is, they do things. The “things” they can do include both modifying knowl-

edge, and using knowledge to make decisions. In Go-Design, knowledge is represented by concepts,

percepts and memories. Concepts are akin to the classes of object-oriented programming - empty

data structures, which when populated (or instantiated in the case of object-oriented programming)

are represented as either a percept or a memory. Thus, concepts define the structure of memories,

sensations and percepts. In other words, concepts describe what the robot is capable of knowing,

while memories and percepts describe what the agent actually knows. Percepts are produced by

perceptions, and represent the robot’s beliefs about the state of the world. Memories are internal

state - variables storing values. Memory, in robot control programs, can take many forms, from

simple integer counters or boolean flags, to program state (e.g. memory of what the robot was

doing is used to decide what to do now), or even procedural memory (e.g. how to do something).

Lastly, note that perceptions are a form of memory - the distinction between memory and perception

is made to force the designer to consider the implications of the quality of perceptions, and thus

groundedness, on decision-making.

7.4 Skill Diagrams - Detailed-Design

A number of new concepts have been introduced in detailed-design, such as skill types (decisions,

actions, behaviours and perceptions), and knowledge representation (concepts, percepts and memo-

ries). In this section we discuss how to represent these concepts diagrammatically.

7.4.1 Flows

In the previous chapter (basic-design), we saw how skill collaborations can be modeled through the

use of skill-transitions, which are a control-flow. Control-flows represent when program control is

passed from one skill to another. In this chapter we introduce knowledge-flows. There are two types

of knowledge-flows - information-flows and concept-flows. Diagrammatically, flows can be thought

of as “connectors”, connecting skills, memories, percepts, and concepts. Information-flows represent

the flow of information throughout the system, such as the reading of a memory or percept, or the

writing (modification) of a memory, percept or concept. An information-flow towards a memory

or percept indicates the modification of that knowledge, while an information-flow away from the

knowledge store indicates the reading of that knowledge. Lastly, concept-flows link concepts with the

knowledge stores (percepts and memories) that rely on them. Figure 7.1 displays the diagrammatic

notation for representing flows.

107

Figure 7.1: Flow types in Go-Design.

7.4.2 Skill Types

Figure 7.2 provides an overview of the skill-types, and the notation for representing them. Adding

a “type” to a skill is a simple matter of prefixing the skill with the skill’s type.

7.4.3 Concepts, Percepts and Memories

Figure 7.3 displays the notation for representing concepts, percepts and memories. As with skill

types, knowledge types are identified by attaching the appropriate prefix to the concept, percept or

memory. The details of each concept, percept or memory is listed below the knowledge name.

7.5 The Design Process

In basic-design (Chapter 6), a process of iterative decomposition was used to model each skill through

interacting subskills, with interactions between subskills modeled through the use of skill-transitions.

Similarly, detailed-design builds upon basic-design through a process of iterative decomposition, but

differs in that skill types are identified, and the decomposition process now focuses on designing

testable, implementable conditions for skill-transitions, together with the necessary skills for making

the required decisions and perceptions about skill-transitions.

7.5.1 Identify Skill Types

The first step in detailed-design is to identify the skill types of the skills identified in basic-design. As

Go-Design decomposes a problem in a top-down manner, during the initial stages of decomposition

most skills will be behaviours or perceptions, whereas during later stages of decomposition, more

108

Figure 7.2: Overview of skill types in Go-Design.

109

Figure 7.3: Knowledge Representation in Go-Design.

110

“primitive” skills such as actions and decisions will be identified, ultimately mapping to sensations

and primitive-actions. The main difficulty in identifying skill types is in separating decisions and

perceptions (as perceptions are a special type of decision, i.e. a decision about the state of the world).

However, not all skill types need to be identified now, as identifying a skill type requires knowledge

of how it will be implemented. If the designer is unable to identify a skill’s type, decompose it.

Be aware that a skill’s type may change with different implementations. For example, a movement

such as panning the robot’s head (looking left to right, then back from right to left, and so forth)

could be implemented as a series of motor positions, where each position is calculated by adding

or subtracting (depending on the direction) a particular angle to the head’s current position. One

implementation may sense and perceive the head’s current position (and thus be a behaviour), while

another may never sense the head’s current position, but instead use memory (i.e. a variable) to

remember what the head’s current position should be, based upon the value of the cumulative angle

addition or subtraction (and thus be an action). Perhaps surprisingly, on the Sony AIBO, the

latter approach of moving without actively perceiving the robot’s head position results in smoother

movement, whereas an approach which involves regularly perceiving the robot’s head position results

in “jerky” movement due to inaccuracies with the robot’s sensors. Thus, labeling a skill’s type is

beneficial as it describes in a skill diagram aspects of the implementation of that skill, while hiding

the mechanics of the implementation. Also, considering a skill’s type is beneficial as it forces the

designer to consider the skill’s purpose, how it will be implemented, and its reliance upon and

interaction with the environment.

7.5.1.1 Guidelines for Identifying Skill Types

To help identify skills, the following guidelines are provided:

• Behaviours - behaviours are composed of other skills, and thus need to be decomposed (unless

the behaviour has been reused from a previous project, or is an external, 3rd party piece of

software). Behaviours:

– Can always be decomposed into other behaviours and/or perceptions.

– Require perception to guide them - their performance is related to the state of the envi-

ronment.

– Are often non-deterministic (i.e. they may fail), e.g. due to incorrect assessment of the

state of the environment.

– Take time - they rarely occur instantaneously (as opposed to some actions, decisions, or

perceptions, which may only take one processing cycle or frame to be completed).

– Usually have a physical effect upon the world or the robot.

111

• Actions are commands which execute without perception, and are assumed by the designer to

be deterministic. For example, commanding a motor on a legged robot to move to a particular

angle, setting the colour of a pixel on a monitor, or making a sound through a speaker. While

actions do not use perception, they may use memory and decisions. For example, an action

such as a “kick” may be executed as a series of joint angles over time, with memory storing

the previous position (which is used to calculate the next position), and the current position

of the motors is never actually sensed or queried. Actions:

– Are perception-less.

– Are deterministic, but of course any action may, in reality, fail. Thus, in deciding whether

a skill should be an action or behaviour, the designer needs to consider whether perception

is required to detect failure, or whether the risk of failure is so small or irrelevant that it

can be ignored in terms of design.

– Can be composed of other actions and decision.

– Are often (but not always) procedural in design, in that they involve sequences of other

actions or decisions.

– Can be physical or virtual in their effect. Actions can be physical, such as moving a limb,

or software-based such as sending an email, or performing a calculation.

• Decisions - Decisions choose - either between skill-transitions, the value of variables (mem-

ory), or to change the structure of a concept. A skill is a decision if:

– The skill involves choosing between different skill-transitions.

– The skill can be framed as an “if-then-else” statement.

– The skill concerns the problem of action-selection, i.e. “when” to do “what”.

– The skill sets the value of (non-perceptual) variables in memory.

• Perceptions - Perceptions are a special type of decision - a decision about the state of the

world, at least partly based upon immediate (i.e. current) sensory or perceptive information,

with that belief about the world being stored in a percept. A skill is a perception if:

– It involves storing information about the state of the external world, based upon the

robot’s sensory experience of the world.

A skill is not a perception if:

– It concerns action-selection or behaviour-selection, e.g. “if the floor is dirty then clean

it” is a decision, while the assessment of whether the floor is dirty is a perception.

112

Figure 7.4: Skill types for Kick-Goal.

– Likewise, “can I see the ball?” is a decision if it involves the querying of memory, whereas

the actual process of “seeing” the ball is a perception.

7.5.1.2 Example

Figure 7.4 displays the decomposition of the context-level skill Kick-Goal, with skill types added to

the skills. More examples with skill-types will be presented throughout the chapter as we decompose

Kick-Goal.

7.5.2 Decompose Transition-Conditions

The next step in the design process is to define transition-conditions. To be capable of implemen-

tation, transition-conditions must be testable, logical conditions. In Go-Design, as each skill is

responsible for testing their own exit-conditions, each skill with an exit transition-condition must be

decomposed and designed. In designing implementations for each transition-condition, the designer

must consider what is precisely meant by each transition-condition. That is, as skill-transitions are

events, the next design step is to specify precisely when a transition-condition is true, and how it will

be detected. As we are concerned with “how”, and thus implementation, this will require not only

113

decomposition, but also identification of knowledge requirements, such as concepts (data structures),

memories and percepts (internal state), and decision-making. Moreover, interfaces between skills

will need to be defined - that is, how does one skill pass control to another? It is similar to defining

the public method interface of a software module, except we are not only specifying the interface,

but we are specifying when the methods of that interface are invoked, and by whom. Thus, when

defining skill-transitions, the designer should specify precisely how and when one skill interacts with,

or commands, another.

7.5.2.1 Example

In Figure 7.4 there are several transition-conditions, namely fallen-over, get-up-complete, upright,

unable-to-find-ball, ball-kicked, and unable-to-find-goal. As each skill is responsible for

testing their own exit-conditions, in Figure 7.4 Perceive-Posture is responsible for fallen-over

and upright, Get-Up is responsible for get-up-complete, and Kick-Ball-At-Goal is responsible

for unable-to-find-ball, ball-kicked, and unable-to-find-goal.

Let’s consider Perceive-Posture, which is responsible for fallen-over and upright. When,

precisely, is the robot fallen-over? When, precisely, is the robot upright? How will these events

be perceived? Furthermore, are fallen-over and upright, in terms of representation, the con-

verse of each other and simply the same boolean value, except one is when the condition is true

and the other false? For example, perhaps upright is really “fallen-over is false”? Figure 7.5

displays a decomposition of Perceive-Posture. In this skill diagram (based upon a real imple-

mentation), two decisions are responsible for determining if the robot has fallen-over, namely

Accel-Over-Threshold and Counter-Over-Threshold. Pseudocode illustrating the implementa-

tion of this decision-making is represented in Figure 7.6. Figure 7.5 also displays the concepts,

percepts and memory required to support the decision-making process. Rather than have two sepa-

rate variables - fallen-over and upright - a single boolean variable is used, where “fallen-over

is false” is equivalent to “upright is true”.

Figure 7.7 displays the skill diagram for Get-Up, which is responsible for the skill-transition

get-up-complete (see Figure 7.4). In this diagram we see the representation of actions as “motions”

- sequences of “positions” (in which positions are joint angle settings) executed over time. We also see

a new skill, Do-Motion, which performs generic motions, of which the Get-Up routine is an example.

Note that in this skill diagram we see the display of a method interface for Do-Motion (the methods

Start() and Continue()), and the representation of a “while loop” (Do-Motion.Continue() is

repeatedly called until the motion is completed). Figure 7.8 displays the decision-making logic as

pseudocode for Get-Up.

114

Figure 7.5: Detailed-Design for Perceive-Posture.

115

Figure 7.6: Pseudocode representing the decision-making for Perceive-Posture.

Figure 7.7: Detailed skill diagram for Get-Up.

116

Figure 7.8: Pseudocode representing the decision-making for Get-Up.

7.5.3 Individual Skill Design

In the previous section, the aim of designing transition-conditions guided the decomposition pro-

cess. However, as the several detailed examples illustrated, designing detailed transition-conditions

requires design of the skill itself. In this section we consider guidelines to assist with the design of

individual skills.

7.5.3.1 Skill Design: Decisions

Decision-making is the most elementary and essential component of intelligence. When designing

decisions, ensure:

• Is the decision a memory management decision or a control management decision?

In other words, what are the choices the decision can choose from? For a decision to be a

decision, it must have choices. Do those choices concern memory management (writing to

memory) or control management (choosing between skill transitions)?

• For control management decisions, define transition-conditions for choosing be-

tween skill transitions. If the decision results in multiple exit-transitions, check the mutual

exclusivity of transition-conditions - i.e. can multiple exit-transitions from the same skill be

true at the same time? If so, is this deliberate?

• For memory management decisions, define input information flows, and the decision-

making process for choosing the value(s) of the outgoing knowledge-flows. Memory

management decisions rely on input information to make decisions, they then process that

information, and then write new information to memory - identify all three processes.

• Decompose, if possible, the decision. If you, as the designer, can’t explain how a skill

works, it needs to be decomposed, exploded and designed. Remember, decisions can be com-

posed of other decisions. Thus, if unable to represent algorithmically how the decisions works,

117

identify new decisions which reduce the complexity of the problem.

7.5.3.2 Skill Design: Perceptions

Perceptions are decisions about the state of the world, and as such, the design of robust and accurate

perceptive capabilities is imperative for the development of grounded robotic systems. The objective

of a perception is to detect a specific real-world event or entity, with the referent of a perception

being the “thing” being perceived. The designer should identify precisely the real-world phenomena

a perception refers to, and this is especially important in team development environments, as all

developers should have a shared understanding of the purpose of a perception.

Consider our goal-kicking soccer robot, and the transition-conditions ball-lost and ball-found.

If the robot’s vision system fails to detect the ball in a single vision frame (i.e. the ball is not detected

for 0.04 of a second in a vision system running at 25 frames per second), but the ball was detected

in the previous vision frame, is the ball location unknown? Is either ball-lost or ball-found

true in this circumstance? Understanding how perceptions work is imperative to designing robust

behaviours. If the designer’s concept of what a perception perceives is different from what the con-

ditions of the perception actually test, this can lead to the designing of ungrounded behaviours.

Consider, we could have a “loose”, highly uncertain definition of ball-found - i.e. any glimpse of

the colour of the ball in the robot’s visual stream is enough to set ball-found to true. Alterna-

tively, we could have a “strict”, highly certain version of ball-found, in which ball-found is only

true when there is a large, round (and thus un-occluded) shape in the center of the robot’s visual

stream. These two different interpretations of the meaning of ball-found will have very different

implications for how a designer would attempt to implement a behaviour such as Get-Ball. Thus,

for each perception, we need to define the specific event it refers to in terms of logical conditions.

For each perception, the developer should:

• Identify the referent of the perception. In supporting documentation, identify the refer-

ent of the perception.

• Identify what, exactly, needs to be perceived? Every perception has a percept, and

each percept has a concept. Thus, define the concept or concepts for the perception, therefore

specifying the data structures for storing knowledge about the referent. Diagrammatically,

every perception should have an outgoing knowledge-flow to a percept.

• Identify when the perception should be operating. Many perceptions will need to

operate all the time, regardless of their dependent decision-making processes, and thus such

perceptions should be scheduled at the context (root) level of the skill decomposition. For

118

Figure 7.9: Revised Kick-Goal to incorporate Perceive-Ball operating every processing cycle.

example, a vision-based perception such as Perceive-Ball should operate every frame. Figure

7.9 displays a revised Kick-Goal skill diagram in which Perceive-Ball is scheduled to occur every

processing cycle, while Figure 7.10 contains a decomposition of Perceive-Ball.

• Identify the input information to the perception. Every perception requires input

knowledge, either from a sensation, or from other percepts. Thus, on a skill diagram, every

perception should have at least one incoming information-flow from either a percept or a

sensation.

• Identify the required groundedness of the perception. What are the dimensions of

error? What is an acceptable margin of error? For each perception, we also need to iden-

tify measures of performance. What makes one implementation better than another? e.g.

ball-found may utilise a number of groundedness criteria, which may be given different levels

of importance - e.g. number of false-positives, number of false negatives, distance at which the

ball may be found, closeness to the ball when it is found, accuracy of the relative distance and

relative heading measurements, and so forth.

119

Figure 7.10: Skill diagram for Perceive-Ball.

120

7.5.3.3 Skill Design: Actions and Behaviours

The design of actions and behaviours is considered concurrently in Go-Design as actions form the

building-blocks of behaviours. That is, while some behaviours can be decomposed into other be-

haviours, at least some behaviours in the skill decomposition must be composed of actions. In other

words, all skill designs must map to actions the robot is capable of performing. The main difference

between actions and behaviours is that actions are perception-less, while behaviours rely upon per-

ception to guide them. In contrast to the design process employed in the rest of Go-Design, the design

and development of actions can occur in a bottom-up manner. The term primitive-action refers to

actions that can not be decomposed, e.g. actions provided by the robot’s programming interface.

Other actions are then layered on top of these, e.g. Move-Leg forms the basis of Walk-A-Step. Con-

sequently, actions should always be tested in a bottom-up manner, e.g. if Move-Leg doesn’t function

as it should, this will affect Walk-A-Step, which will affect Spin-On-Spot, and so on. In contrast

to the design of actions, the design of behaviour is a process of decomposition. All behaviours need

to be decomposed into actions the robot is capable of performing.

When designing actions:

• Identify any memory required by the action. Many actions (especially those which are

not instantaneous in their effect) require internal state to remember the current state of the

action’s operation.

• Ensure there is no use of perception - otherwise, if perception is needed, treat the skill

as a behaviour. Actions should be deterministic. If they are not they should be a behaviour.

For example, consider Spin-On-Spot, an action (possibly behaviour) used when searching

for the ball. If there are other robots or obstacles in the environment, than an obstacle

avoidance capability needs to be incorporated, as we would not want our robot to collide

with other objects while spinning. Obstacle avoidance will require perception of obstacles,

and thus the use of perception. However, this raises design issues - should the perception

and avoidance of obstacles be incorporated into Spin-On-Spot, or should Avoid-Obstacles

be separated from Spin-On-Spot1? Three different designs are presented in Figures 7.11, 7.12

and 7.13. Figure 7.11 displays Spin-On-Spot as an action with no perceptive capabilities, and

thus no obstacle avoidance capabilities. Figure 7.12 displays Spin-On-Spot as a behaviour,

with obstacle avoidance capabilities embedded within the skill. However, this skill diagram

is overly complicated, and can be simplified by the separation of Perceive-Obstacles and

Avoid-Obstacles, as displayed in Figure 7.13. The latter skill diagram is not only simpler, it
1See Section 6.5.6.

121

Figure 7.11: Skill diagram for Spin-On-Spot in which there is no obstacle avoidance capability.

also promotes reuse - Spin-On-Spot can be reused by other skills that may not require obstacle

avoidance capabilities.

• Decompose, if possible, the action. If you, as the designer, can’t explain how an action

works, it needs to be decomposed, exploded and designed. Remember, actions can be composed

of both other actions and decisions (unless they are a primitive-action). Thus, if unable to

represent algorithmically how the action works, identify new skills which reduce the complexity

of the problem.

In contrast to the design process of actions, the design process for behaviours follows that outlined

in basic-design (Chapter 6) - iterative decomposition until decisions, actions and perceptions can be

identified.

7.5.4 Reviewing a Detailed Skill Architecture

At this point in the design process, a detailed skill-based architecture for a robot control problem is

emerging. The skill architecture allows the designer to model hierarchical, modular, capability-based

122

Figure 7.12: Skill diagram for Spin-On-Spot in which the perception of obstacles and the behaviour
to avoid obstacles is incorporated.

123

Figure 7.13: Simplified and improved skill diagram for Spin-On-Spot with obstacle avoidance ca-
pabilities. The Spin-On-Spot action is reused from Figure 7.11.

skills, and the interactions between these skills through event-based skill transitions and transition-

conditions. The guidelines presented in this chapter will assist the designer in designing knowledge

representation (concepts, percepts and memories), identification of the skills which manipulate and

depend on that knowledge, and the design of actions and behaviours which control the robot’s

effectors. The last step in Go-Design is to review, and revise accordingly, the detailed-design, so as

to ensure that the design is as thorough, consistent, and grounded as possible. In this section a skill

design review checklist is presented.

7.5.4.1 Design Review Checklist

The designer should:

1. Check all behaviours have been decomposed. Behaviours, by definition, can be decom-

posed into other skills.

2. Check skills that should run every frame (i.e. processing cycle) do run every

frame, i.e. they should never sit in any sequence after any possible skill terminators! Skill

scheduling (e.g. every frame, on demand, and so forth) along with other assumptions about

the skill’s usage should be marked in the skill’s template.

3. For every decision, check there is at least one inward knowledge-flow. Decisions

require knowledge - they should not be made randomly. For example, in Figures 7.11 and 7.12,

124

the decision Choose-Spin-Direction does not have an incoming knowledge flow. Figures 7.14

and 7.15 display the corrected skill diagrams.

4. Check that each decision results in either a control management decision or a

memory management decision. A decision must make a choice, whether it be choosing

between a skill transition or choosing the value of a memory or percept.

5. Ensure all decisions are decomposed to the point where pseudocode can be used

to represent the decision making process. For example, in Figure 7.5 the decisions

Accel-Over-Threshold and Counter-Over-Threshold can not be decomposed any further.

6. For every memory management decision, check that there is an outward knowledge-

flow to the modified memory. If a decision modifies memory, ensure there is a knowledge-

flow to that memory. If the memory contains multiple attributes (i.e. data members), the

knowledge-flow should be labeled with the particular variable that is modified. For example,

in Figure 7.15 Choose-Head-Position modifies head-position, while Choose-Step-Params

modifies step-params.

7. Check every perception has a percept. The result of a perception is stored in a percept,

and should be indicated by a knowledge-flow.

8. Check every percept has a concept. Each percept should have a corresponding concept.

9. Ensure every percept has a perception. For example, the Figure 7.14 contains the percept

Ball, but no corresponding perception has yet been defined.

10. Check every perception has an input. Every perception must have at least a sensation

or a percept as an incoming information-flow.

11. Avoid building perceptions with multiple exit-conditions. Rather, for control man-

agement, construct a decision which uses the percept to arbitrate between skill-transitions.

12. Check every memory has a corresponding concept.

13. Check memories are initialised with default values where appropriate.

14. Ensure each subskill’s exit-transitions match those of the parent diagram. When

decomposing a skill the exit-transitions for that skill match those of the parent diagram.

15. Check each skill’s identifier and naming is unique and consistent. During the design

process the identifiers can lose sequence. Ensuring consistency with respect to each skill’s

identifer and naming avoids any confusion, especially in team development environments.

125

Figure 7.14: Corrected skill diagram for Spin-On-Spot-And-Avoid-Obstacle, which now chooses
the spin direction for Spin-On-Spot. Figure 7.15 shows the corrected Spin-On-Spot. Note, the
Ball percept is outside the decomposition box to represent the global nature of this percept.

126

Figure 7.15: Corrected Spin-On-Spot, which no longer chooses spin-direction. Rather, this memory
is now set by Spin-On-Spot-And-Avoid-Obstacle, as displayed in Figure 7.14.

127

7.6 Summary

In this chapter, a methodology for extending a skill architecture to a detailed-design has been

presented. A detailed-design adds value to a skill architecture by guiding the developer through the

process of iterative decomposition, until a design is sufficiently detailed that it provides a blueprint

for software implementation. In particular, in this Chapter, Go-Design provided guidelines for:

• Identifying skill types - in particular decisions, perceptions, actions and behaviours. Skill types

serve to guide the developer through the detailed-design process. For example, identification

of behaviour skill-types indicates that that particular skill should be decomposed. Ultimately,

all decision-making within a robot control program can be represented by decisions and per-

ceptions, while all effector control can be represented by actions and behaviours.

• Designing transition-conditions. Each transition-condition of a skill architecture requires

decision-making processes to determine when those conditions are true. This forces the de-

sign to have a thorough understanding of the important, relevant events which effect system

performance.

• Specific guidelines for designing decisions, perceptions, actions and behaviours.

• Specific guidelines for designing knowledge representation schemas, as well as explicit iden-

tification of both the skills which modify knowledge, and the skills which rely upon that

knowledge.

• A review checklist for ensuring design integrity, completeness and consistency.

Next, we turn our attention to reviewing Go-Design, comparing it to existing methodologies for

robotics, and considering future work.

Chapter 8

Discussion and Conclusion

In this chapter:

• A review of Go-Design is presented, in which the benefits and limitations of the methodology

are discussed, and Go-Design is compared to other related methodologies.

• A discussion and exploration of the issues faced in developing robotic agents capable of au-

tonomous grounding is discussed.

• Lastly, a summary of the thesis and its findings is presented.

8.1 Go-Design Evaluation

Go-Design is a methodology for designing control programs for autonomous mobile robots. The

methodology, while concerned with the holistic problem of robot control, has a particular concern

with the grounding problem. In this section we consider the benefits and limitations of the Go-Design

methodology, together with a comparative assessment with other existing, related methodologies.

8.1.1 Benefits of Go-Design

Go-Design has numerous benefits. In particular:

• Context-level analysis. Context-level analysis provides a step-by-step guide to eliciting

and documenting requirements for robot control problems, which is especially useful for less

experienced designers.

• A simple, expressive modeling notation. Go-Design’s modeling notation allows for, in

one diagram, modeling of flow-of-control through event-based skill-transitions, hierarchical de-

composition (skills and subskills), identification of skill types, and designing and modeling of

128

129

representation (concepts are equivalent to data structures, while percepts and memories rep-

resent instances of those data structures). Go-Design’s modeling notation is not only suitable

for modeling robot control problems, but also software in general.

• Skill types help guide the decomposition process. During detailed-design, the iden-

tification of skill types allows the designer to be aware of when further decomposition of a

skill into subskills is required, thus allowing the designer to judge when a design is “detailed

enough”. For example, behaviours can always be decomposed, perceptions require decisions,

and decisions require implementations. Lastly, behaviours, decisions and perceptions must

map to actions the robot is capable of performing.

• Perception modeling. The role of perception is not only integral to the grounding problem,

but it is also one of the key distinguishing aspects between writing traditional software and

software for controlling autonomous mobile robots. Skill types in Go-Design force the devel-

oper to label and design perceptual skills and their representational requirements (percepts).

Moreover, other dependent skills, such as other perceptions, behaviours and decision-making

processes, can be traced through the use of flows.

• Flow-of-control modeling. By modeling flow-of-control throughout the system through

the use of skill-transitions, the designer can easily understand the dependencies and effects of

decision-making processes and perceptual knowledge on system performance. Skill-transitions

represent decision-making processes about real-world events that lead to control being passed

from one skill to another.

• Decision modeling. Decision-making in software is often embedded and implicit (i.e. buried

in “if-statements”). Go-Design identifies “decisions” as a type of skill to force explicit modeling

of decision-making. Explicit modeling of decision-making forces the designer to model the

possible outcomes (choices) of each decision, and thus the designer must consider what the

desirable and undesirable (or “right” and “wrong”) decision outcomes are.

• Design of knowledge representation. As Go-Design requires the designer to identify skill

types, and each skill type has specific knowledge requirements, Go-Design forces the designer

to explicitly identify the knowledge required and modified by the system in terms of conceptual

data structures. Moreover, the scope of that knowledge use can be easily identified through

the use of flows (i.e. identification of the skills which modify and require specific concepts,

percepts and memories).

• Transparency of design. Skill diagrams allow for a clear, transparent representation of a

system design. They document each skill’s responsibilities and interactions with other skills,

130

as well as detailed identification of all related knowledge representation. The transparency of

design allows designers to explain (and understand) a robot’s behaviour.

• Assists with the management of complex designs. The transparent and hierarchical,

decomposition-based nature of skill diagrams, allows for simple, concise representation of a

large, complex design. In team environments, teams can communicate precisely (each skill has

a unique identifier), and the modular design allows for straightforward distribution of tasks

between team members.

• Practical. Lastly, detailed-design is simply that - detailed. Grounding, and implementing

artificial intelligence for robotics, is a software problem. To narrow the gap between conceptual

design and implementation, detailed-design requires skill implementations defined in terms of

pseudocode.

8.1.2 Limitations of Go-Design

The limitations of Go-Design relate to the fact that it is grounding through design - rather than

autonomous grounding. As discussed in Chapter 3, grounding by design is both brittle and labo-

rious. That is, at design-time it is difficult (except in extremely simple environments or for very

simple tasks) for the designer to foresee all the possible situations the agent will encounter. It is

a laborious process as the designer must ground a priori the agent’s control program, and this

process is time consuming as it generally requires a great deal of trial-and-error programming. For

autonomous grounding to be possible, robots will need to be capable of learning through interaction

and experience of the environment, and thus revising their own skill architectures and knowledge rep-

resentations. In particular, Go-Design skill diagrams are relatively static - whereas, for autonomous

grounding, skill architectures will need to be highly adaptable. That is, at run-time:

• skill-transitions may need to change, i.e. skill sequences may need to change order;

• concept structures may need to change or be created, i.e. what the robot is capable of knowing

will need to be revised during the robot’s operation;

• new skills will need to be learned and incorporated into an existing skill architecture.

While these capabilities have not been directly addressed by the Go-Design methodology, they

are discussed in more detail in Section 8.2.

131

8.1.3 Comparative Assessment

While most grounding research concerns how to develop agents which can autonomously develop

their own representations (i.e. autonomous grounding), the fact all robotic systems are grounded

through human design on a case-by-case, ad-hoc basis has been mostly overlooked. As discussed

in Chapter 3, there are only a few existing methodologies concerned specifically with the design of

solutions for robotic control problems (for example Brooks’ subsumption architecture[20, 21, 23, 24],

Bryson’s Behaviour-Oriented Design[25], and Real-time Control Systems Architecture[3, 4]), and

even less that are concerned with the grounding problem (e.g. Roy’s grounding framework[107]). In

this section we review and evaluate Go-Design in comparison to these existing methodologies.

8.1.3.1 Subsumption Architecture

Brooks’ subsumption architecture[20, 21, 23, 24] is a longstanding, behaviour-based approach to

developing reactive robots. As discussed in Section 3.3.3.1, the subsumption architecture involves

organising reactive behaviours into layers, where each layer implements a particular competency,

with lower-level layers more “reflex-like”, and higher-level layers more abstract or longer term in

their planning. Each behaviour is individually hand-built, tested and physically grounded (see Sec-

tion 2.1.4) through a tight coupling of perception and action. Agents built using the subsumption

architecture lack a central, monolithic model of the world, with representation kept to a minimum

and localised to each behaviour.

There are similarities between the subsumption architecture and Go-Design. For example, both

feature modular design, i.e. the subsumption architecture focuses on behaviours and layers, while

with Go-Design the units of abstraction are skills, with the modules of both design methods being

capable of being developed, implemented and tested in isolation. As with the subsumption architec-

ture, representation can be distributed in Go-Design (though it need not be - it is an implementation

issue) - however, the design of representation in Go-Design is distributed, i.e. representation is de-

signed to support localised decision-making.

The main differences between the subsumption architecture and Go-Design is Go-Design is less

restrictive with regard to architecture, representation, and the use of planning, while more detailed

with respect to decomposing and implementing individual modules. For example, Go-Design is less

restrictive in that behaviours in Go-Design need not be reactive, while the principles of subsumption

can be modeled using Go-Design (e.g. the ability to detect and respond to falling overrides all other

skills in the Kick-Goal example, as seen in Chapter 7). Go-Design is more detailed with regard to

individual behaviour design because detailed-design provides a set of specific guidelines for design-

ing the implementations of individual behaviours. Also, Go-Design differs from the subsumption

architecture in that rather than coordinate complex action-selection problems through inhibition

132

and suppression of layers, Go-Design employs skill-transitions and transition-conditions. Bryson[25]

argues it is a conceptually simpler task for an engineer to describe a behaviour in terms of a sequence

of events, as this is a characteristic of our own planning processes.

8.1.3.2 BOD

Behavior-Oriented Design[25], or “BOD”, is a methodology for engineering behaviour-based agents

(embodied or software-based) with multiple, potentially conflicting, goals or tasks (see Secion 3.3.3.4).

BOD is a behaviour-based approach to intelligence, and is influenced by the Brooks’ subsumption

architecture[20, 21, 23, 24]. BOD differs from the subsumption architecture in that action-selection

(i.e. behaviour selection) relies upon “reactive planning”, and provides (both in design and code)

a specific data structure called POSH (Parallel-rooted, Ordered, Slip-stack Hierarchical Reactive

Plans) to perform this. With POSH, reactive plans can be thought of as a hierarchical, priori-

tised sequence of behaviours that should be executed in specific circumstances (contexts), with the

designer’s task being to specify when and how each behaviour is expressed.

As with the subsumption architecture, BOD and Go-Design are similar in that they are both

modular, with the unit of abstraction in BOD being the behaviour and the unit of abstraction

in Go-Design being the skill. Both BOD and Go-Design use a top-down iterative decomposition

design process, with Go-Design’s decomposition process influenced by BOD’s simple, straightforward

approach of identifying “whats”,“whens”, and “hows”. Go-Design, however, differs from BOD in

that Go-Design is not restricted to the use of reactive planning for action-selection. With BOD,

there is also little problem analysis, no requirements elicitation, no identification of behaviour types

(in comparison to skill types), no clear guidelines to identify when to stop decomposing, and no

consideration for evaluating the groundedness of an agent.

8.1.3.3 Wasson’s Representation Design Methodology

Wasson[135] presents a methodology for designing representations for autonomous mobile robots

(see Section 3.3.3.2). The glaring difference between Wasson’s representation design methodology

and Go-Design is scope - Wasson’s representation design methodology focuses purely on represen-

tation design, not issues of control, decision-making, and grounding, as does Go-Design. However,

Wasson’s view of the representation problem is similar to that discussed in Chapter 3, in that Was-

son considers there to be two main problems in designing representation systems. Firstly, choosing

what to represent, stating the “most fundamental question in the design of a representation system

is, what should be represented?” (p. 252), and secondly, the maintenance of representations with

respect to dynamic environments. These two problems are similar to the problems of relevance

and reference - subproblems of the grounding problem. Another similarity includes the use of task

133

decomposition to identify subtasks as a means for identifying required representation. However,

Wasson’s representation diagrams require two separate diagrams to illustrate task decomposition

and flow-of-control, whereas both concepts can be illustrated through the use of skill diagrams.

8.1.3.4 RCS

RCS[3, 4] (Real-time Control Systems Architecture) is a methodology and architecture suitable for

software-intensive, real-time control problems, such as those posed by autonomous mobile robots

(see Section 3.3.3.3). RCS uses a methodology to iteratively partition system tasks into control

nodes, with each control node sharing a generic node model. Each control node contains a process

for behaviour generation, world modeling, sensory processing, and value judgment, together with a

knowledge database. The placement of a control node in an RCS architecture hierarchy indicates

the the scope and time span of the node, with higher level nodes broader in their planning scope.

RCS has some similarities to Go-Design. It is modular in nature, with control nodes being the

main unit of design. Control nodes also have structural similarities to skills - they have different

sub-processing types, such as behaviour generation, world modeling, sensory processing, and value

judgment. Behaviour generation can be likened to behaviour skill types, world modeling and sensory

processing likened to the perception skill type, and value judgements can be likened to the decision

skill type. The design process in both methodologies involves iterative, top-down decomposition of

tasks into subtasks, and both methodologies have a requirements analysis phase. With RCS each

control node is designed as a finite state machine, and the design process involves identifying the

state transitions and their dependencies upon the world - this is similar to defining skill-transitions

and their transition-conditions. RCS is also the only general purpose robotics methodology (besides

Go-Design), which treats the symbol grounding problem as a problem per se.

RCS differs from Go-Design in that its hierarchical structure is determined by planning scope,

whereas the Go-Design planning hierarchy is determined by conceptual groupings - i.e. how the

designer decomposes a problem. Also, each control node is more structured in its architecture

than a skill, as each node must possess processes for behaviour generation, world modeling, sensory

processing, and value judgment. The RCS architecture results in highly complex hierarchical designs

with no simple notation for representing them (as evidenced by Figure 3.5). Lastly, as of 2005, there

“remain many features of the 4D/RCS reference model architecture that have not yet been fully

implemented in any application”[4], therefore leaving some doubt as to the practicality of the RCS

architecture.

134

8.1.3.5 Roy’s Grounding Framework

Roy[107] offers a grounding framework for grounding language in the world for robotic agents (see

Section 3.3.3.5). The fundamental difference between Roy’s grounding framework and Go-Design is

scope - while Roy’s grounding framework focuses on the grounding problem, Roy’s interpretation of

the grounding problem restricts it so that it is only concerned with language, with grounding defined

as the ability to “use words to refer to entities in the world”.

8.2 Future Work

Recall that in Chapter 1, one of the thesis objectives was to explore how the grounding methodology

and framework can be used for designing and comparing long-term solutions to the autonomous

grounding problem (the problem of how to build artificial systems which can ground themselves). In

this section we consider issues related to autonomous grounding, identified during the development

of Go-Design.

8.2.1 Understanding Decomposition

Decomposition is a weak method which involves breaking a complex problem into smaller subprob-

lems - the rationale being that solving the smaller subproblems is a simpler, more tractable and

feasible process than solving the problem as a whole. Generally, robot control problems lack an

explicit, defined structure (as opposed to, for example, programming a chess computer). In such

situations, decomposition is used by designers to cope with the complexity of the problem[113], and

decomposition is common to all methodologies for designing programs for controlling autonomous

mobile robots. Likewise, problem decomposition is integral to many aspects of software design -

for example, in object-oriented programming a problem task is decomposed into objects with roles

and responsibilities, in behaviour-based robotics the problem task is decomposed into behaviours,

while in Go-Design the problem task is decomposed into skills. Despite the remarkable presence of

decomposition in design, it is a fairly neglected topic in the psychology and science of design[74, 88].

With respect to grounding, knowing what requires representing (the problem of relevance) requires

knowing the subtleties of what decisions need to be made - both to achieve the task, but also to

maintain the correspondence between representation and referent. Therefore, understanding the

process of decomposition is imperative for designing autonomous grounding capabilities.

135

8.2.2 Go-Design Development Environment

One of the limitations of Go-Design is the static nature of its designs. For autonomous grounding to

become a reality, programs need to be capable of change and adaption in real-time. Thus, in terms

of Go-Design, the structure of a skill architecture needs to be capable of self-modification to adapt

to a changing world. However, traditional software, including Go-Design, does not change except

with discrete revisions. Program revision and maintenance is resource (e.g. time) consuming, and

importantly, when the control program of a robotic agent is changed, the changes are made by the

programmer, and not by the program itself. An adaptable system will need to be capable of changing

its programming instructions for future conditions based upon experience (i.e. through learning)

in real-time. Examples of such approaches, as discussed in Section 2.3.6, fall under the umbrella

of developmental robotics[13, 35, 139, 137, 138]. Developmental robotics aims to create artificial

intelligences which exhibit autonomous mental development, in the same way human cognitive and

behavioural development occurs through infancy to adulthood. The practical motivations behind

developmental robotics is to develop robots capable of learning new tasks that a human programmer

does not anticipate at the time of programming.

To enable Go-Design to model both dynamic control structures and to improve productivity,

future plans involve the development of a Go-Design development environment, in which skill dia-

grams can be used not only as a design tool, but also as an implementation tool. The highly detailed

nature of Go-Design skill diagrams offers an extensible framework for designing transparent control

systems for autonomous robots, and this transparency is vital for understanding how developmental

control programs have evolved through interaction and experience of the environment. Benefits of a

Go-Design development environment would include real-time debugging and modification of skills,

skill-transitions, transition-conditions, and concepts. Lastly, as discussed in previous work[115], a

Go-Design development environment could provide seamless integration of off-board resources, such

as those provided by the semantic web, which offers a medium for knowledge sharing and reuse

between agents.

8.2.3 Evaluating Grounding Approaches

In other related fields, the need for methods to facilitate comparative assessment and evaluation

of algorithms has long been recognised. For example, in the field of computer vision empirical

assessment of algorithms often involves the comparison of processed images with images which

represent the “ground truth” (i.e. “correctly” processed images, as determined or perceived by

a human observer) through the use of various metrics[16]. Despite the obvious benefits of such

empirical evaluation techniques (i.e. the comparison and accurate assessment of the state-of-the-

art), and the recognised fact that grounding performance can be a matter of degree[48, 142], empirical

136

evaluation techniques are lacking with respect to grounding.

8.2.4 Escaping the Chinese Room

Long-term grounding-related research is, generally speaking, motivated by two key issues:

1. The need to develop programs which can be meaning users, rather than only being meaningful

to the program writers and users. This problem has be called first-hand semantics[144], or

intrinsic meaning[67].

2. The need to develop programs which can ground themselves autonomously, i.e. programs that

can autonomously find relevant and useful structure in the world, represent it, and maintain

that representation with respect to a changing world.

How, in the longer-term, can these issues be overcome? In this section we consider two key issues

which may contribute to a grounding solution: improved understanding and modeling of the concept

of “meaning”, and the incorporation of a predictive element to grounding solutions.

8.2.4.1 Understanding Meaning

As discussed in Chapters 2 and 3, meaning is a concept which has troubled philosophers throughout

history. Two distinct aspects of meaning are appealed to in grounding literature - firstly, the idea

that the grounding problem is the problem of creating intrinsic, first-hand semantics or meaning for

an artificial computational system; and secondly, referential meaning - that the grounding problem

can (at least partly) be solved by somehow connecting (in the right way) symbols with sensorimo-

tor data. While “meaning” is a crucial, integral component of the grounding problem, nearly all

grounding-related research is devoted to modeling it (usually implicitly) as a problem of maintain-

ing correspondence or reference between a representation and a referent. One notable exception,

as discussed in Section 2.2.4, is Roy[107, 108] who models three aspects of meaning in language

- emotional, connotative meaning (e.g. “my father gave me that cup - it has great meaning for

me”), functional meaning (e.g. “this coffee is cold” can imply “get a hot coffee”), and referential

meaning (as in a theory of reference, e.g. “I meant that one”). As Steels[120] observes, there is

an enormous gap between the richness of human meaning, and the reality of representation use in

computer-based systems. This inadequacy of meaning modeling is highlighted through the use of the

“concept” representation-type in Go-Design, and the examples presented in Chapter 7. For exam-

ple, consider the concept fallen-over, and its definition in terms of rules applied to accelerometer

sensor data, as displayed in Figure 7.5. It would appear illogical (even absurd) to attribute any

intrinsic meaning to fallen-over, whether such rules for determining if the robot is fallen-over are

137

learned autonomously or hand-coded by the designer. Likewise, consider attributing meaning to

any visual-based concept, and the display of raw image data and the corresponding image displayed

in a format suitable for computer monitors in Figure 5.2. How can any visual “concept”, simply

defined in rules applied to collections of numbers, be meaningful to a computer program, rather than

meaningful solely to its designer? If a solution to the grounding problem concerns the development

of a program capable of intrinsic, first-hand semantics, it is not clear how this can be achieved by

defining higher-level “symbolic” representations with lower-level “subsymbolic” sensorimotor repre-

sentations. Thus, if researchers continue to define the grounding problem in relation to meaning,

future work must concern modeling and defining “meaning”.

8.2.4.2 Grounding through Prediction

An important part of the grounding problem is the development of systems capable of grounding

themselves, rather than being grounded through design, i.e the development of systems capable

of autonomous grounding. Several authors[103, 107, 112] have proposed that grounding requires a

predictive component. The premise behind such arguments is that perception requires hypothesising

about the future state of the world, and then comparing the actual state of the world against what

is sensed. Thus, a hypothesis is tested by comparing the predicted state of the world with the sensed

state of the world. If a hypothesis is confirmed, the strength (or probability) of a theory about the

world being correct is strengthened, whereas if a hypothesis is not confirmed as expected, beliefs are

revised. Thus, coupled with interaction with the world, a robot can create a closed loop in which

every processing cycle offers the agent the opportunity to conduct an experiment, testing its beliefs

about the world. Such an approach to autonomous grounding has been rarely been tested, but may

offer a viable solution to assist with the problem of autonomous grounding.

8.3 Summary and Concluding Comments

This thesis has presented Grounding Oriented Design (Go-Design) - a methodology for designing

control programs for autonomous mobile robots. The methodology, while concerned with the holistic

problem of robot control, has a particular concern with the grounding problem[67] - a longstanding,

poorly understood issue that has interested philosophers, computer scientists, and cognitive scien-

tists alike. The grounding problem, in its various guises, refers to the task of creating meaningful

representations for artificial agents. Throughout this thesis, it has been argued that in the context of

practical robotics, grounding is the process of “embedding” an agent in an environment to perform a

task. Or more colloquially, an agent is grounded when it knows what it needs to know, to do what we

need it to do. In such a context, a grounded agent possesses a representation which faithfully reflects

138

relevant aspects of the world. In contrast, an ungrounded agent could be, for example, delusional

or suffering from hallucinations (“false positives”), overly concerned with irrelevant things (e.g. the

frame problem[92]), or incapable of reliably perceiving, recognizing or anticipating relevant things

in a timely manner (“false negatives”).

While most grounding research concerns how to develop agents which can autonomously develop

their own representations (i.e. autonomous grounding), the fact that all robotic systems are grounded

through human design on a case-by-case, ad-hoc basis has been overlooked. That is, currently, the

majority of the grounding process is performed by program designers, and not autonomously by

the programs we design. Designers find meaning, structure, and patterns in the world that can be

used in the design of robot control programs, but due to our poor understanding of this process,

little (if any) of our knowledge of “how to ground” is encoded in programs. Thus, today’s agents

are grounded by design - i.e. we ground robots by understanding the world for them. We identify

structure and consistency in the world that can be used for decision-making. When grounding

agents there are two main problems - choosing what to represent (the problem of relevance), and

the problem of maintaining that representation with respect to a changing world (the problem of

reference).

Due to the difficult nature of the grounding problem, designers tend to ground robotic agents

on a case-by-case, task-by-task basis. As a consequence, the systems we build tend to be brittle in

the face of unanticipated changes in the environment or task, and as such, robotics development

is a highly iterative code-and-fix paradigm, in which developing systems capable of “scaling up” to

human levels of intelligence has (so far) proven unattainable. Thus, the development of Go-Design is

motivated by the need for a systematic approach for designing, implementing, and thus grounding,

the “minds” of robotic agents. As discussed in Chapter 3 there are few existing methodologies

concerned specifically with the design of solutions for robotic control problems, and even less that

are concerned with the grounding problem.

Due to our interest in grounding, Go-Design focuses on understanding (both that of the the

developer and robot) by providing a simple, expressive means for modeling knowledge and decision-

making in robotic systems through the use of skill diagrams. Go-Design offers guidelines and pro-

cesses for not only iteratively decomposing a robot control problem into a set of collaborating skills,

but for also designing the representation to support those skills. Go-Design begins with context-

level analysis, in which a set of guidelines assist the developer in understanding the nature of the

robot control problem. Context-level analysis is followed by two design phases: basic-design which

involves constructing a skill-architecture, and a detailed-design in which a skill-architecture is used

to design the agent’s representation and decision-making processes. A groundedness framework[142]

is used for describing and assessing the groundedness of either the complete system or of individual

139

skills. Examples of the methodology’s use and benefits were provided, while suggestions for future

work (such as the development of a dynamic Go-Design development environment, and autonomous

grounding through prediction) were discussed.

Appendix A

Grounding Oriented Design:
The Step-by-Step Guide

This chapter presents a summary of the key steps of Go-Design.

A.1 Context-Level

The first step of Go-Design is understanding the nature of the current problem - a process called

context-level analysis.

A.1.1 Context-Level: Objectives

1. Identify the objectives of the system. Why is the robotic system being built? Under-

standing the purpose of the system will help with understanding the intent of the project’s

requirements.

2. If there are multiple objectives, prioritise them in order of importance. Identify

trade-offs or possible conflicts between different objectives, and then place a value on their

relative importance. For example, safety versus speed.

A.1.2 Context-Level: Constraints

Constraints specify how requirements must be achieved, and thus must be identified before design

and development commences. In particular, the developer should identify:

1. What are the project’s resource constraints? e.g. available processing power for real-

time processing; development time, deadlines; money; man-power, laptops, batteries, etc.

140

141

2. What are the project’s implementation constraints? i.e. are there any particular

constraints governing how the context-level requirements should be achieved? e.g. do any

particular algorithms need to used?

A.1.3 Context-Level: Current Capabilities

The fact we need to build something indicates we lack particular capabilities. We address the

question of “what do we build?” by comparing the existing capabilities of the system with the

required capabilities of the system. The robot’s current capabilities are dependent upon both the

robot’s hardware, and the existing software for utilising that hardware.

A.1.3.1 The Robot(s)

Context-level analysis requires understanding the capabilities of the robot or robots utilised for the

project. The developer should specify and understand:

1. What sensors does it have? What are their physical characteristics? What aspects

of the world can the sensors allow us to perceive? For example, cameras will have

characteristics such as field-of-view, distance sensors will have a limited range, and so forth.

2. What effectors does it have? What are their physical characteristics? Robots have

physical limits, e.g. how much they can carry, how quickly they can move, etc.

3. What are the processing capabilities of the robot? Does the processing take place

on-board or off-board? On-board processing will usually be limited, whereas off-board

processing will be less restrictive. Awareness of the robot(s)’ computational resources (mem-

ory and processing speed) is required for establishing the feasibility of different algorithmic

solutions.

4. What is the robot’s battery life? This may affect the robot’s design and suitability for

the task, i.e. the need to frequently recharge the robot’s battery may not be well suited to

some tasks.

5. What communication capabilities does the robot possess? For example, does the

robot possess serial communication, removable flash drives, wireless TCP/IP, and so forth.

The ability to communicate with the robot may affect how program revisions are uploaded,

how the robot is programmed, tested and debugged, how communication between robots in

multi-robot systems is performed, and the external resources that can be accessed (such as the

internet, the semantic web, and so forth).

142

A.1.3.2 Software

Hardware is of little use without software to control it. For example:

1. How is the robot programmed? Does it have an operating system? What language can

it be programmed in? Does it have an API? Does it have a development environment?

2. What development and debugging tools are available?

3. What existing perceptive capabilities does the robot have? What perceptive skills

can be reused from previous projects? Sensations describe the raw data from robot’s

sensors, whereas perceptions are interpretations of that data as being about something, e.g.

the numeric value attributed to a pixel representing a colour.

4. For each perceptual skill, how reliable are they? What is the nature of their error?

How is their performance affected by or related to environmental influences? How can they

be tested? Do visualisations need to be developed (e.g. writing software to stream the robot’s

vision so it can be displayed on a computer monitor).

5. What existing effector and behaviour capabilities does the robot have? What

physical actions can the robot perform? What “routines” can be used? For example, to make

a robot walk do we need to write a locomotion module or can we simply call a command

“walk”?

6. How reliable and accurate are the existing effector and behavioural capabilities?

For example, consider an inverse kinematics walking engine - does a command which instructs

the robot move 1cm forward really move the robot exactly 1cm forward? If not, what are the

consequences of such error and how can they be overcome?

7. Identify the capabilities of any existing communication software. For example, are

there FTP servers? Is it a case of socket programming, using reliable TCP/IP streams, or some

other higher-level communication protocol? Communication capabilities are required not only

for multi-agent systems, but for programming and testing.

8. What preexisting decision-making and planning processes does the robot have?

e.g. a reasoning engine, a skill-architecture, etc.

9. What other resources can assist with the development process? For example, third

party tools, newsgroups, and access to domain experts.

143

A.1.4 Context-Level: Required Capabilities

In the previous sections we considered the project’s objectives (i.e. why we are building the robot

mind), as well as the existing capabilities of the robotic system. The next step is to consider the

requirements of the robot’s mind - in other words, what the robot’s mind needs to allow the robot to

do. Go-Design has two processes to assist with requirements understanding - requirement templates

for documenting individual requirements, and a requirements elicitation checklist to help identify

requirements.

A.1.4.1 Requirement Templates

1. Identify the requirements of the system - what it is that the robot(s) must do? For each

requirement, specify:

(a) What the robot should do;

(b) When the robot should do it, i.e. the context of the requirement;

(c) Why the robot should do it, i.e. the need ;

(d) The nature of any constraints on how the requirement should be achieved, e.g.

“the robot must be able to localise, but the localisation algorithm must use a Particle

Filter”;

(e) The importance or priority of the requirement, e.g. System Critical, Essential,

Desirable, Luxury, etc.

(f) Performance dimensions and metric, i.e. how attempts to satisfy the requirement

can be measured (e.g. the dimension speed and the metric time); and lastly,

(g) The required performance standard in terms of measurable performance dimensions.

Figure A.1 contains a blank requirement template.

A.1.4.2 Requirements Elicitation Checklist

Table A.1 contains a checklist to assist with eliciting project requirements.

A.2 Basic-Design

Basic-design is the first step of the design process. Basic-design involves designing a skill-based

architecture to solve the required task. A skill architecture consists of skills, skill-transitions and

transition-conditions.

144

Figure A.1: Go-Design Requirement Template.

145

A.2.1 Skills

Skills are encapsulated abilities. Skills can represent any type of ability - complex behaviours such as

playing soccer or driving a car; thought processes such as learning, performing calculus or deductive

reasoning; perceptions such as being able to perceive colour, or being able to see a soccer ball or

traffic hazards; and lastly, simple actions such as the ability to consciously blink an eyelid or to move

a leg to a particular position.

Figure A.2 provides a legend which describes the elementary notation used in skill diagrams,

while Figure A.3 illustrates a simple skill diagram for the skill “Do-Grocery-Shopping”. Skills are

represented with rectangular boxes, with the name of the skill written below a numeric identifier.

The first letter of word in a skill name should be capitalised, with the words of a skill name separated

by a hyphen. Subskills of a skill are identified by their numeric identifier. For example, if a skill’s

identifer is “1”, any subskills would be identified as “1.1”, “1.2” and so forth. Skill decompositions

are represented not only by numeric identifiers, but by encompassing the subskills which constitute

the decomposition with another, larger rectangular box (the decomposition box). A skill’s name

should be unique, and thus the same skill can appear with different numeric identifiers if it is

reused by two different parent skills. Skill sequences require the use of skill-transitions, with skill-

transitions represented with an arrow. Skill-transitions can have transition-conditions, which are

testable conditions which signify when one skill should stop and another should start. We represent

transition-conditions by adding a caption (in lowercase) to the arrows between skills on a skill

decomposition diagram. Also note that a black-dot with a circle around it is used to represent the

skill’s completion (as per UML state diagrams). If a skill-transition lacks a transition-condition, this

implies the skill-transition occurs automatically (i.e. by default). Flow-of-control begins with the

parent skill - thus, in Figure 6.2 flow-of-control begins with Do-Grocery-Shopping. A skill diagram

can have multiple flow-of-control start and end points. Lastly, concurrent skills are represented by

having multiple transitions active at the same time.

A.2.2 The Basic-Design Process

The first stage of Go-Design, “basic design”, provides a set of guidelines for constructing a skill

architecture. Designing a skill architecture involves:

1. Decomposing the problem (the context-level skill) into subskills.

2. Identifying and defining the collaborations (the transitions) between skills.

146

Figure A.2: Skill Diagram Legend.

147

Figure A.3: Shopping Skill Diagram.

A.2.3 The Context-Level Skill

We use the term context-level skill to describe the mind’s required capabilities, i.e. the entire

behavioural and functional capabilities of the system. The context-level skill can be likened to the

context-level diagram of a data-flow-diagram or the root of a tree - the context-level skill is the

starting point for the iterative decomposition design process. To identify the context-level skill, the

skill’s numeric identifier is set to “0” (as per the convention used in data-flow-diagrams). Consider

designing a robot whose sole purpose is to kick goals on a soccer field. The context-level skill for

such a robot is displayed in Figure A.4.

Figure A.4: A context-level skill diagram for a goal-kicking soccer robot.

148

A.2.4 Iterative Skill Decomposition

The context-level skill represents the objectives and requirements of the system, the robot, the

environment, and the robot’s current sensory and effector capabilities. The designer must now

decompose the context-level skill into a set of implementable, collaborating skills.

A.2.4.1 Identifying Skills

The first step in problem decomposition is to identify a skill sequence - a set of steps, some of which

may run concurrently, that achieve the agent’s objectives. When identifying subskills, it is important

to remember skills do things, and thus a skill name should always include a verb. The aim is to

identify subskills that conceptually help solve the problem (i.e. the current skill). The following

steps can assist the designer in identifying skills:

• Look for verbs - skills “do something”.

• Look for nouns - the objects that are having something done to them (by the verb), e.g. “drive

the car”, “kick the ball”.

• Skills should be named by their core and essential functionality, i.e. their objective, for example

“Get-Ball” isn’t “Walk-To-Ball” because we don’t want to limit or restrict how we might

get the ball. In other words, name skills in terms of what they achieve, rather than how they

achieve it.

• Consider if each subskill should be generalised (i.e. abstracted). For example, should “Get-Ball”

be “Get-Object”? In answering such questions the developer must weigh up the benefits of

reuse versus the benefits of specialisation. In our current example, as the only object our

robot will ever get is a ball, there is no need to generalise. Also, for an abstraction such as

Get-Object to be created, a parameter to represent the type of object to be “got” needs to

be created.

A.2.4.2 Identifying Skill Transitions

Decomposing skills into subskills is meaningless without defining how those skills interact. Skill

transitions represent relevant and important events, which we also term “whens”[25]. Thus, identi-

fying transition-conditions involves identifying when one skill should end, and when another should

start. There are two types of transition condition - entry-conditions and exit-conditions, with the

exit-condition of one skill being the entry-condition for another. When identifying skill-transitions,

the designer should note that every skill (except for the context-level skill), should have at least one

entry-condition (else, how does it start?).

149

To help identify skill-transitions, Go-Design employs what-if analysis. What-if analysis is a

brainstorming approach in which the designer considers possible or potential situations or scenarios

that may affect system performance. What-if analysis involves the designer hypothesising about

relevant potential events, i.e. “what happens if ...?”. For example, qualitative assessments of how a

skill can terminate can assist in identifying skill transitions. For example:

• What happens if the skill is successful? Consider the skill’s objective or objectives -

if the objective or objectives are achieved, what should happen next? Should there be an

exit-condition to another skill?

• What happens if the skill is unsuccessful? Skills will not always achieve their objective.

Common types of unsuccessful exit conditions include:

– What happens if the skill “times out”? In other words, can the skill take too long

to achieve its objective, and if so, what should happen?

– What happens if a skill’s entry-condition is no longer true during the skill’s

operation? When designing skills, the designer should consider what knowledge is re-

quired to execute that skill. What should happen if a skill, once started, lacks insufficient

knowledge to complete the skill?

– What happens if new events render the skill’s continued operation irrelevant?

There are a large (probably infinite) number of potential events that could occur which

could make any (or all) of the skills’ continued operation irrelevant (e.g. the robot could

physically break-down, or the sun could explode) - the task of the designer is to use their

understanding of the domain to identify likely events.

A.2.5 Skill Templates

During basic-design, skill diagrams model only a skill’s name and interactions with other skills.

In many development circumstances (especially team environments), more documentation will be

required so that all team members can gain a clear idea of each skill’s purpose. To capture such

information, Go-Design provides skill templates - documents which prompt the designer to identify

key aspects of each skill. While many aspects of each skill’s nature are implicit in their naming (e.g.

the objective of Get-Ball is obviously “to get the ball”), and thus also implicit in the mind of the

designer, skill templates provide means for explicitly documenting, in detail, aspects of each skill

which can not be easily captured in a skill diagram. Skill templates describe:

• The objective of the skill - i.e. why is the skill being built? In other words, for what

context-level requirement is it being built to (at least partially) satisfy?

150

• A description of the skill - how will the skill achieve its objective?

• The skill’s entry-conditions and exit-conditions - i.e. when and when not the skill

should and should not operate - imperative for establishing skill transitions and their transition

conditions.

• The constraints of the skill - restrictions and limitations governing how the skill is imple-

mented.

• Performance dimensions and metric for assessing the skill’s performance.

• The required performance standard, described in terms of the performance dimensions

and metric.

• Identification, where possible, of any dependent skills.

A skill template is displayed in Figure A.5.

A.2.6 Design: Keeping it Simple

To keep diagrams simple, there are two main techniques that can be employed, both of which involve

simplifying existing skill diagrams by creating new, smaller skill diagrams.

1. Check for skills which can be layered - that is, incorporated into a more general, higher-

level skill (that is, moved closer to the context-level skill). Such skills often need to be executed

regardless of what other skills the agent is performing, and tend to be more “reflex-like”, e.g.

general acts of perception, or detecting and recovering from accidents such as a legged robot

falling over.

2. Check for skills which can be amalgamated - that is, check for multiple skills which can

be amalgamated into a new skill. This can result in extra skill diagrams, but with each skill

diagram containing fewer skills.

A.3 Detailed-Design

The product of basic-design is a skill architecture, consisting of skills and skill transitions. While

a skill architecture can play a role in the high-level design of an autonomous robotic system, for

the purpose of implementing a software solution more detail is required. Thus, a detailed-design is

needed which provides a blueprint for translating a skill architecture into software.

151

Figure A.5: A skill template.

152

A.3.1 Skill Types and Knowledge Representation

In detailed-design, we consider how to identify the knowledge, concepts, perceptions and decision-

making processes required for a robot’s mind to control that robot appropriately. Detailed-design

involves:

• Identifying each skill’s “type” as either an action, a perception, a decision, or a behaviour.

• Designing the representation each skill requires, including the concepts (data structures), per-

cepts (the stored memory of a perception) and memories (all other forms of internal state).

• Documenting the requirements of each skill, including required groundedness.

• Identifying the dependencies between skills and knowledge representation through the use of

flows.

Figure A.6 displays a summary of the different skill types, while Figure A.7 displays the different

knowledge types, and Figure A.8 displays the notation for representing flows.

A.3.2 Identify Skill Types

The first step of detailed design is to identify each skill’s type. Go-Design differentiates between

four types of skills - decisions, actions, perceptions and behaviours. Every skill falls into one of

these categories. Collaborations between these different skill types are used as the starting point

in designing and modeling the required decision-making and representation for the robot control

problem.

A.3.2.1 Decisions

Go-Design concerns two main types of decisions, namely control management and knowledge man-

agement. Control management decisions involve choosing between skill-transitions, while knowledge

management concerns the manipulation of representation (internal state). Decisions range from

high-level (even abstract or profound) reasoning (e.g. “what happened?”, “what should I do now?”,

“why am I here?”, etc) to at their lowest-level, simple “if statements” in code (e.g. “if x is true then

do a, else do b”).

A.3.2.2 Actions

Actions are commands which:

1. Execute without perception.

153

Figure A.6: Overview of skill types in Go-Design.

154

Figure A.7: Knowledge Representation in Go-Design.

Figure A.8: Flow types in Go-Design.

155

2. The developer can assume to be deterministic - that is, the designer can assume they “work”

(but of course they might not, due to wear-and-tear or damage, etc).

In Go-Design, actions are not limited to those that have physical effects upon the world - they

can also be virtual or software-based (e.g. saving a file to disk, or sending an email). Note, that while

actions may be perception-less, some can be decomposed. As actions have no perception capabilities,

actions can not evaluate their own performance. Thus, if evaluation of an action’s performance is

required, it must be provided by another type of skill. The term primitive-action refers to actions

that can not be decomposed, e.g. actions provided by the robots programming interface.

A.3.2.3 Perceptions

Perceptions are decisions made about the state of the world. We use the term perception to refer

to the process of perceiving, and the term percept to refer to the memory (the persistent state) of

that perception. Perceptions contrast with sensations, as sensations refer to raw sensory input to

the robotic system.

A.3.2.4 Behaviours

Lastly, behaviours are complex processes which can incorporate all the different types of skills, such

as the ability to “drive a car”. Thus, a behaviour can always be decomposed. During the design

process, often the “behaviour” label is given to skills we havent designed how to do yet, as all

behaviours can ultimately be decomposed into decisions, perceptions and actions.

A.3.2.5 Guidelines for Identifying Skill Types

To help identify skills, the following guidelines are provided:

• Behaviours - behaviours are composed of other skills, and thus need to be decomposed (unless

the behaviour has been reused from a previous project, or is an external, 3rd party piece of

software). Behaviours:

– Can always be decomposed into other behaviours and/or perceptions.

– Require perception to guide them - their performance is related to the state of the envi-

ronment.

– Are often non-deterministic (i.e. they may fail), e.g. due to incorrect assessment of the

state of the environment.

– Take time - they rarely occur instantaneously (as opposed to some actions, decisions, or

perceptions, which may only take one processing cycle or frame to be completed).

156

– Usually have a physical effect upon the world or the robot.

• Actions are commands which execute without perception, and are assumed by the designer to

be deterministic. For example, commanding a motor on a legged robot to move to a particular

angle, setting the colour of a pixel on a monitor, or making a sound. While actions do not use

perception, they may use memory and decisions. For example, an action such as a “kick” may

be executed as a series of joint angles over time, with memory storing the previous position

(which is used to calculate the next position), and the current position of the motors is never

actually sensed or queried. Actions:

– Are perception-less.

– Are deterministic, but of course any action may, in reality, fail. Thus, in deciding whether

a skill should be an action or behaviour, the designer needs to consider whether perception

is required to detect failure, or whether the risk of failure is so small or irrelevant that it

can be ignored in terms of design.

– Can be composed of other actions and decision.

– Are often (but not always) procedural in design, in that they involve sequences of other

actions or decisions.

– Can be physical or virtual in their effect. Actions can be physical, such as moving a limb,

or software-based such as sending an email, or performing a calculation.

• Decisions - Decisions choose - either between skill-transitions, the value of variables (mem-

ory), or to change the structure of a concept. A skill is a decision if:

– The skill involves choosing between different skill-transitions.

– The skill can be framed as an “if-then-else” statement.

– The skill concerns the problem of action-selection, i.e. “when” to do “what”.

– The skill sets the value of (non-perceptual) variables in memory.

• Perceptions - Perceptions are a special type of decision - a decision about the state of the

world, at least partly based upon immediate (i.e. current) sensory or perceptive information,

with that belief about the world being stored in a percept. A skill is a perception if:

– It involves storing information about the state of the external world, based upon the

robot’s sensory experience of the world.

A skill is not a perception if:

157

– It concerns action-selection or behaviour-selection, e.g. “if the floor is dirty then clean

it” is a decision, while the assessment of whether the floor is dirty is a perception.

– Likewise, “can I see the ball?” is a decision if it involves the querying of memory, whereas

the actual process of “seeing” the ball is a perception.

A.3.3 Decompose Transition-Conditions

The next step in the design process is to define transition-conditions. To be capable of implemen-

tation, transition-conditions must be testable, logical conditions. In Go-Design, as each skill is

responsible for testing their own exit-conditions, each skill with an exit transition-condition must be

decomposed and designed. In designing implementations for each transition-condition, the designer

must consider what is precisely meant by each transition-condition. That is, as skill-transitions

are events, the next design step is to specify precisely when a transition-condition is true, and how

it will be detected. As we are concerned with “how”, and thus implementation, this will require

not only decomposition, but also identification of knowledge requirements, such as concepts (data

structures), memories and percepts (internal state), and decisions.

A.3.4 Individual Skill Design

In the previous section, the aim of designing transition-conditions guided the decomposition process.

In this section we consider guidelines to assist with the design of individual skills.

A.3.4.1 Skill Design: Decisions

When designing decisions, ensure:

• Is the decision a memory management decision or a control management decision?

In other words, what are the choices the decision can choose from? For a decision to be a

decision, it must have choices. Do those choices concern memory management (writing to

memory) or control management (choosing between skill transitions)?

• For control management decisions, define transition-conditions for choosing be-

tween skill transitions. If the decision results in multiple exit-transitions, check the mutual

exclusivity of transition-conditions - i.e. can multiple exit-transitions from the same skill be

true at the same time? If so, is this deliberate?

• For memory management decisions, define input information flows, and the decision-

making process for choosing the value(s) of the outgoing knowledge flows. Memory

158

management decisions rely on input information to make decisions, they then process that

information, and then write new information to memory - identify all three processes.

• Decompose, if possible, the decision. If you, as the designer, can’t explain how a skill

works, it needs to be decomposed, exploded and designed. Remember, decisions can be com-

posed of other decisions. Thus, if unable to represent algorithmically how the decisions works,

identify new decisions which reduce the complexity of the problem.

A.3.4.2 Skill Design: Perceptions

Perceptions are decisions about the state of the world, and as such, the design of robust and accurate

perceptive capabilities is imperative for the development of grounded robotic systems. The objective

of a perception is to detect a specific real-world event or entity, with the referent of a perception

being the “thing” being perceived. The designer should identify precisely the real-world phenomena

a perception refers to, and this is especially important in team development environments, as all

developers should have a shared understanding of the purpose of a perception. Thus, for each

perception, we need to define the specific event it refers to in terms of logical conditions.

For each perception, the developer should:

• Identify the referent of the perception. In supporting documentation, identify the refer-

ent of the perception.

• Identify what, exactly, needs to be perceived? Every perception has a percept, and

each percept has a concept. Thus, define the concept or concepts for the perception, therefore

specifying the data structures for storing knowledge about the referent. Diagrammatically,

every perception should have an outgoing knowledge-flow to a percept.

• Identify when the perception should be operating. Many perceptions will need to

operate all the time, regardless of their dependent decision-making processes, and thus such

perceptions should be scheduled at the context (root) level of the skill decomposition.

• Identify the input information to the perception. Every perception requires input

knowledge, either from a sensation, or from other percepts. Thus, on a skill diagram, every

perception should have at least one incoming knowledge from either a percept or a sensation.

• Identify the required groundedness of the perception. What are the dimensions of

error? What is an acceptable margin of error?

159

A.3.4.3 Skill Design: Actions and Behaviours

The design of actions and behaviours is considered concurrently in Go-Design as actions form the

building-blocks of behaviours. That is, while some behaviours can be decomposed into other be-

haviours, at least some behaviours in the skill decomposition must be composed of actions. In other

words, all skill designs must map to actions the robot is capable of performing. The main difference

between actions and behaviours is that actions are perception-less, while behaviours rely upon per-

ception to guide them. In contrast to the design process employed in the rest of Go-Design, the design

and development of actions can occur in a bottom-up manner. The term primitive-action refers to

actions that can not be decomposed, e.g. actions provided by the robot’s programming interface.

Other actions are then layered on top of these, e.g. Move-Leg forms the basis of Walk-A-Step. Con-

sequently, actions should always be tested in a bottom-up manner, e.g. if Move-Leg doesn’t function

as it should, this will affect Walk-A-Step, which will affect Spin-On-Spot, and so on. In contrast

to the design of actions, the design of behaviour is a process of decomposition. All behaviours need

to be decomposed into actions the robot is capable of performing.

When designing actions:

• Identify any memory required by the action. Many actions (especially those which are

not instantaneous in their effect) require internal state to remember the current state of the

action’s operation.

• Ensure there is no use of perception - otherwise, if perception is needed, treat the skill

as a behaviour. Actions should be deterministic. If they are not they should be a behaviour.

• Decompose, if possible, the action. If you, as the designer, can’t explain how an action

works, it needs to be decomposed, exploded and designed. Remember, actions can be composed

of both other actions and decisions (unless they are a primitive-action). Thus, if unable to

represent algorithmically how the action works, identify new skills which reduce the complexity

of the problem.

In contrast to the design process of actions, the design process for behaviours follows that outlined

in basic-design (Chapter 6) - iterative decomposition until decisions, actions and perceptions can be

identified.

A.3.5 Reviewing a Detailed Skill Architecture

At this point in the design process, a detailed skill-based architecture for a robot control problem is

emerging. The skill architecture allows the designer to model hierarchical, modular, capability-based

160

skills, and the interactions between these skills through event-based skill-transitions and transition-

conditions. The guidelines presented in this chapter will assist in the designer in designing knowledge

representation (concepts, percepts and memories), identification of the skills which manipulate and

depend on that knowledge, and the design of actions and behaviours which control the robot’s

effectors. The last step in Go-Design is to review, and revise accordingly, the detailed-design, so as

to ensure that the design is as thorough, consistent, and grounded as possible. In this section a skill

design review checklist is presented.

A.3.5.1 Design Review Checklist

The designer should:

1. Check all behaviours have been decomposed. Behaviours, by definition, can be decom-

posed into other skills.

2. Check skills that should run every frame (i.e. processing cycle) do run every

frame, i.e. they should never sit in any sequence after any possible skill terminators! Skill

scheduling (e.g. every frame, on demand, and so forth) along with other assumptions about

the skill’s usage should be marked in the skill’s template.

3. For every decision, check there is at least one inward knowledge-flow. Decisions

require knowledge - they should not be made randomly.

4. Check that each decision results in either a control management decision or a

memory management decision. A decision must make a choice, whether it be choosing

between a skill transition or choosing the value of a memory or percept.

5. Ensure all decisions are decomposed to the point where pseudocode can be used

to represent the decision making process.

6. For every memory management decision, check there is an outward knowledge-flow

to the modified memory. If a decision modifies memory, ensure there is a knowledge-flow to

that memory. If the memory contains multiple attributes (i.e. data members), the knowledge-

flow should be labeled with the particular variable that is modified.

7. Check every perception has a percept. The result of a perception is stored in a percept,

and should be indicated by a knowledge-flow.

8. Check every percept has a concept. Each percept should have a corresponding concept.

9. Ensure every percept has a perception.

161

10. Check every perception has an input. Every perception must have at least a sensation

or a percept as an incoming information-flow.

11. Avoid building perceptions with multiple exit-conditions. Rather, for control man-

agement, construct a decision which uses the percept to arbitrate between skill-transitions.

12. Check every memory has a corresponding concept.

13. Check memories are initialised with default values where appropriate.

14. Ensure each subskill’s exit-transitions match those of the parent diagram. When

decomposing a skill the exit-transitions for that skill match those of the parent diagram.

15. Check each skill’s identifier and naming is unique and consistent. During the design

process the identifiers can lose sequence. Ensuring consistency with respect to each skill’s

identifer and naming avoids any confusion, especially in team development environments.

A.4 Detailed-Design Example Diagrams

162

Figure A.9: Spin-On-Spot-And-Avoid-Obstacle. Note, the Ball percept is outside the decompo-
sition box to represent the global nature of this percept.

163

Figure A.10: Spin-On-Spot, implemented as an action, not a behaviour.

164

Figure A.11: Detailed skill diagram for Get-Up.

165

Figure A.12: An implementation of the decision Check-For-Timeout. Note, frame-id is outside
the decomposition-box to represent the global nature of this variable.

166

Figure A.13: Detailed-Design for Perceive-Posture.

167

Table A.1: Requirements Elicitation Checklist
Describe the behaviour of the robotic system.
Using as much as detail as possible, describe the behaviour of the system.

Specify behavioural requirements.,
Using the behavioural description, identify specific measures of performance (performance bench-
marks.

Identify Perceptual Requirements.
Use the behavioural description and behavioural requirements to identify specific aspects of the
robot’s environment (including its own state) that must be perceived. Consider:

• Are there any physical objects that need to be perceived? e.g the soccer ball;

• What attributes of those physical objects need to be perceived? e.g. the location of the soccer
ball;

• What aspects of the robot’s physical state need to be perceived? e.g. fallen over, low fuel,
etc.

• What events needs to be perceived? i.e. are there any significant changes in the state of the
environment (and robot) that require an appropriate action? e.g. a change in the trajectory
of a moving soccer ball.

Identify locomotion requirements (movement and action). Locomotion requirements arise
from behavioural requirements. e.g. how is the robot required to move around the environment?
For example:

• Directional requirements. What are the directional requirements? Does the robot only have
to move backwards and forwards? Turning? Strafing? etc.

• Speed requirements. How quickly should each type of movement be capable of being executed?
e.g. straight-line speed? turning and rotational speed?

• Stability requirements. How stable does the robot need to be move while moving?

• Special actions. What actions (other than movement) are required by the robot? e.g. the
ability to grip an object? the ability to get up after a fall (legged robots), the ability to kick
a ball, the ability to climb steps?

• Terrain. Is the robot’s movement requirements related to different types of terrain? What is
the nature of the terrain the robot is required to move over? (or move through, in the case
of autonomous ships, planes, helicopters, submarines, etc).

Identify Communication Requirements.
Identify the communication needs of the robotic system. For example, what communication capa-
bilities are required for the robot(s) to communicate with:

• Developers? (i.e. for debugging or reporting)

• Users? e.g. the security robot needs to report the presence of intruders to a security guard.

• Other robots and software agents? e.g. soccer playing robots might tell their teammates
where they intend to kick the ball.

Identify Environmental Requirements.
In what conditions is the robotic system expected to operate? Under water? On the moon? In
changing light? In controlled light? Flat terrain? Uneven terrain? etc

Bibliography

[1] P. Agre. Computational Theories of Interaction and Agency, chapter Computational research

on interaction and agency, pages 1–52. MIT Press, Cambridge, MA, 1996.

[2] P. Agre and S. Rosenschein, editors. Computational Theories of Interaction and Agency. MIT

Press, Cambridge, MA, 1996.

[3] J. Albus. The NIST Real-time Control System (RCS): an approach to intelligent systems

research. Journal of Experimental and Theoretical Artificial Intelligence, 9:157–174, 1997.

[4] J. Albus and A. Barbera. RCS: A cognitive architecture for intelligent multi-agent systems.

Annual Reviews in Control, 29(1):89–99, 2005.

[5] M. Anderson. Embodied cognition: A field guide. Artificial Intelligence, 149:91–130, 2003.

[6] R. Arkin. Behavior-Based Robotics. MIT Press, Cambridge, MA, 1998.

[7] J-C. Baillie. Grounding symbols in perception with two interacting autonomous robots. In

L. Berthouze, H. Kozima, C. Prince, G. Sandini, G. Stojanov, G. Metta, and C. Balkenius,

editors, Proceedings of the 4th International Workshop on Epigenetic Robotics: Modeling Cog-

nitive Development in Robotic System, pages 107–110. Lund University Cognitive Studies 117,

2004.

[8] L. Barsalou. Ad-hoc categories. Memory and Cognition, 11(3):211–227, 1983.

[9] L. Barsalou. Perceptual symbol systems. Behavioral and Brain Sciences, 22:577–609, 1999.

[10] L. Barsalou, W. Yeh, B. Luka, K. Olseth, K. Mix, and L. Wu. Concepts and meaning. In

K. Beals, G. Cooke, D. Kathman, K. McCullough, S. Kita, and D. Testen, editors, Chicago

Linguistics Society 29: Papers from the parasession on conceptual representations, pages 23–

61. University of Chicago: Chicago Linguistics Society, 1993.

[11] M. Bickhard. Representational content in humans and machines. Journal of Experimental and

Theoretical Artificial Intelligence, 5:285–333, 1993.

168

169

[12] D. Blank, D. Kumar, and L. Meeden. A developmental approach to anchoring. Computer

science technical report, Bryn Mawr College, 2002.

[13] D. Blank, D. Kumar, and L. Meeden. A developmental approach to intelligence. In Sumali J.

Conlon, editor, Proceedings of the Thirteenth Annual Midwest Artificial Intelligence and Cog-

nitive Science Society Conference, 2002.

[14] D. Blank, D. Kumar, L. Meeden, and J. Marshall. Bringing up robot: Fundamental mech-

anisms for creating a self-motivated, self-organizing architecture. Cybernetics and Systems,

36(2):125–150, 2005.

[15] A. Borghi. Object concepts and embodiment: Why sensorimotor and cognitive processes

cannot be separated. La nuova critica, 49(50):90–107, 2007.

[16] K. Bowyer and P. Phillips. Overview of work in empirical evaluation of computer vision

algorithms. In K. W. Bowyer and P. J. Phillips, editors, Empirical Evaluation Techniques in

Computer Vision, IEEE Comp Press, CA, USA, 1998.

[17] G. Box. Robustness in Statistics, chapter Robustness in the strategy of scientific model build-

ing. Academic Press, New York, 1979.

[18] S. Brennan. Social and cognitive psychological approaches to interpersonal communication,

chapter The Grounding Problem in Conversations With and Through Computers, pages 201–

225. Lawrence Erlbaum, Hillsdale, NJ, 1998.

[19] J. Briscoe, editor. Linguistic evolution through language acquisition: formal and computational

models. Cambridge University Press, Cambridge, 2002.

[20] R. A. Brooks. A robust layered control system for a mobile robot. IEEE Journal of Robotics

and Automation, 2:1423, April 1986.

[21] R. A. Brooks. Elephants don’t play chess. Robotics and Autonomous Systems, 6:3–15, 1990.

[22] R. A. Brooks. Intelligence without reason. In Proceedings of 12th Int. Joint Conf. on Artificial

Intelligence, page 569595, Sydney, Australia, August 1991.

[23] R. A. Brooks. Intelligence without representation. Artificial Intelligence, 47:139–160, 1991.

[24] R. A. Brooks. New approaches to robotics. Science, 253:1227–1232, 1991.

[25] J. Bryson. Intelligence by Design: Principles of Modularity and Coordination for Engineering

Complex Adaptive Agents. PhD thesis, MIT, 2001.

170

[26] C. Burgess and K. Lund. Modelling parsing constraints with high-dimensional context space.

Language and Cognitive Processes, 12:177210, 1997.

[27] J. Cahn and S. Brennan. A psychological model of grounding and repair in dialog. In Pro-

ceedings of AAAI Fall Symposium on Psychological Models of Communication in Collaborative

Systems, pages 25–33, North Falmouth, MA, 1999. American Association for Artificial Intelli-

gence.

[28] A. Cangelosi. Symbol grounding in connectionist and adaptive agent models. In S.B. Cooper,

B. Lowe, and L. Torenvliet, editors, New Computational Paradigms: Proceedings of the First

Conference on Computability in Europe, CiE 2005, volume LNCS 3526, pages 69–74, Berlin,

2005. Heidelberg: Springer-Verlag.

[29] A. Cangelosi. The grounding and sharing of symbols. Pragmatics and Cognition, 14(2):275–

285, 2006.

[30] A. Cangelosi, A. Greco, and S. Harnad. From robotic toil to symbolic theft: Grounding

transfer from entry-level to higher-level categories. Connection Science, 12(2):143–162, 2000.

[31] A. Cangelosi, A. Greco, and S. Harnad. Symbol grounding and the symbolic theft hypothesis.

In A. Cangelosi and D. Parisi, editors, Simulating the Evolution of Language, chapter 9, pages

191–210. Springer Verlag, London, 2002.

[32] A. Cangelosi and S. Harnard. The adaptive advantage of symbolic theft over sensorimotor

toil: Grounding language in perceptual categories. Evolution of Communication, 4(1):117–

142, 2001.

[33] A. Cangelosi, E. Hourdakis, and V. Tikhanoff. Language acquisition and symbol ground-

ing transfer with neural networks and cognitive robots. In 2006 IEEE World Congress on

Computational Intelligence, pages 2885–2891. IJCNN, IEEE Press, 2006.

[34] A. Cangelosi and D. Parisi, editors. Simulating the Evolution of Language. Springer, London,

2002.

[35] A. Cangelosi and T. Riga. An embodied model for sensorimotor grounding and grounding

transfer: Experiments with epigenetic robots. Cognitive Science, 30(4):673–689, 2006.

[36] D. Chalmers. The Symbolic and Connectionist Paradigms: Closing the Gap, chapter Subsym-

bolic Computation and the Chinese Room. Lawrence Erlbaum, 1992.

[37] A. Chella, H. Dindo, and I. Infantino. Anchoring by imitation learning in conceptual spaces.

In AI*IA 2005: Advances in Artificial Intellgience, pages 495–506. Springer, 2005.

171

[38] A. Chella, M. Frixione, and S. Gaglio. Conceptual spaces for computer vision representations.

Artificia Intelligence Review, 16(2):137–152, 2001.

[39] A. Chella, M. Frixione, and S. Gaglio. Anchoring symbols to conceptual spaces: the case of

dynamic scenarios. Robotics and Autonomous Systems, 43(2):175–188, 2003.

[40] A. Chella, M. Frixione, and R. Pirrone. Conceptual representations of actions for autonomous

robots. Robotics and Autonomous Systems, 34:251–263, 2001.

[41] R. Chrisley and T. Ziemke. Embodiment.

[42] M. Christiansen and N. Chater. Symbol grounding - the emperor’s new theory of meaning?

In Proceedings of the 15th Annual Conference of the Cognitive Science Society, pages 155–160,

June 1993.

[43] H. Clark and S. Brennan. Perspectives on socially shared cognition, chapter Grounding in

communication, pages 127–149. APA, Washington, DC, 1991.

[44] H. Clark and E. Schaefer. Contributing to discourse. Cognitive Science, 13:259–294, 1989.

[45] P. Cohen, T. Oates, and C. Beal. Robots that learn meanings. In First Joint Conference of

Autonomous Agents and Multiagent Systems, 2002.

[46] P. Cohen, T. Oates, C. Beal, and N. Adams. Contentful mental states for robot baby. In

Eighteenth national conference on Artificial intelligence, pages 126–131, Menlo Park, CA,

USA, 2002. American Association for Artificial Intelligence.

[47] A. Collins and E. Loftus. A spreading activation theory of semantic memory. Psychological

Review, 82:407–428, 1975.

[48] S. Coradeschi and A. Saffiotti. Anchoring symbols to vision data by fuzzy logic. In

A. Hunter and S. Parsons, editors, Symbolic and Quantitative Approaches to Reasoning

and Uncertainty, number 1638 in LNCS, pages 104–115. Springer-Verlag, 1999. Online at

http://www.aass.oru.se/˜asaffio/.

[49] S. Coradeschi and A. Saffiotti. Anchoring symbols to sensor data: Preliminary report. In

AAAI/IAAI, pages 129–135, 2000.

[50] S. Coradeschi and A. Saffiotti. Perceptual anchoring of symbols for action. In Pro-

ceedings of the 17th IJCAI Conference, pages 407–412, Seattle, WA, 2001. Online at

http://www.aass.oru.se/˜asaffio/.

172

[51] S. Coradeschi and A. Saffiotti. An introduction to the anchoring problem. Robotics and

Autonomous Systems, 43(2-3):85–96, 2003. Special issue on perceptual anchoring. Online at

http://www.aass.oru.se/Agora/RAS02/.

[52] K. Coventry and S. Garrod. Saying, seeing and acting. the psychological semantics of spatial

prepositions. In Essays in Cognitive Psychology. Lawrence Erlbaum Associates, 2004.

[53] P. Davidsson. Toward a general solution to the symbol grounding problem: Combining machine

learning and computer vision. AAAI Fall Symposium Series, Machine Learning in Computer

Vision: What, Why and How?, pages 157–161, 1993.

[54] G. Dorffner and E. Prem. Connectionism, symbol grounding, and autonomous agents. 1993.

[55] H. Dreyfus. What computers still can’t do: a critique of artificial reason. The MIT Press,

London, England, 3rd edition, 1993.

[56] L. Floridi. Open problems in the philosophy of information. Metaphilosophy, 35:554–582, 2004.

[57] P. Gärdenfors. Conceptual Spaces: The Geometry of Thought. A Bradford Book, MIT, London,

2000.

[58] P. Gärdenfors. How Homo Became Sapiens: On the Evolution of Thinking. Oxford University

Press, London, 2003.

[59] A. Glenberg, D. Havas, R. Becker, and M. Rinck. The grounding of cognition: The role of

perception and action in memory, language, and thinking, chapter Grounding Language in

Bodily States: The Case for Emotion. Cambridge University Press, Cambridge, 2005.

[60] A. Glenberg and M. Kaschak. Grounding language in action. Psychonomic Bulletin and

Review, 9:558–565, 2002.

[61] A. Glenberg and D. Robertson. Indexical understanding of instructions. Discourse Processes,

28:1–26, 1999.

[62] A. Glenberg and D. Robertson. Symbol grounding and meaning: A comparison of high-

dimensional and embodied theories of meaning. Journal of Memory and Language, 43:379–401,

2000.

[63] S. Goonatilake and S. Khebbal, editors. Intelligent Hybrid Systems. Wiley, 1995.

[64] P. Gorniak and D. Roy. Probabilistic grounding of situated speech using plan recognition and

reference resolution. In Seventh International Conference on Multimodal Interfaces, 2005.

173

[65] A. Greco, A. Cangelosi, and S. Harnad. A connectionist model for categorical perception and

symbol grounding. In Proceedings of the 15th An nual Workshop of the European Society for

the Study of Cognitive Systems, 1998.

[66] J. Halpern and D. Koller. Representation dependence in probabilistic inference. In Chris

Mellish, editor, Proceedings of the Fourteenth International Joint Conference on Artificial

Intelligence, pages 1853–1860, San Francisco, 1995. Morgan Kaufmann.

[67] S. Harnad. The symbol grounding problem. Physica, 42:335–346, 1990.

[68] S. Harnad. Grounding symbols in the analog world with neural nets. Think, 2(1):12–18, 1993.

[69] S. Harnad. Problems, problems: The frame problem as a symptom of the symbol grounding

problem. Psycoloquy, 4(34), 1993.

[70] S. Harnad. Symbol grounding is an empirical problem: Neural nets are just a candidate

component., 1993.

[71] S. Harnad. The “artificial life” route to “artificial intelligence.” Building Situated Embodied

Agents, chapter Grounding Symbolic Capacity in Robotic Capacity, pages 276–286. Lawrence

Erlbaum, New Haven, 1995.

[72] S. Harnad. The symbol grounding problem. In Encyclopedia of Cognitive Science. Nature

Publishing Group/Macmillan, London, 2003.

[73] S. Harnad. Handbook of Categorization in Cognitive Science, chapter To cognize is to catego-

rize: Cognition is categorization. Elsevier, Amsterdam, 2005.

[74] C. Ho. Some phenomena of problem decomposition strategy for design thinking: Differences

between novices and experts. Design Studies, 22(1):27–45, 2001.

[75] C. Hudelot, N. Maillot, and M. Thonnat. Symbol grounding for semantic image interpreta-

tion: From image data to semantics. In Proceedings of International Workshop on Semantic

Knowledge in Computer Vision, ICCV 2005, 2005.

[76] N. Jennings. Agent-based computing: Promise and perils. In Proceedings of the Sixteenth

International Joint Conference on Artificial Intelligence, pages 1429 – 1436, San Francisco,

1999. Morgan Kaufmann Publishers.

[77] N. Jennings. On agent-based software engineering. Artificial Intelligence, 117:277296, 2000.

174

[78] N. Jennings and M. Wooldridge. Agent-Oriented Software Engineering. In Francisco J. Garijo

and Magnus Boman, editors, Proceedings of the 9th European Workshop on Modelling Au-

tonomous Agents in a Multi-Agent World : Multi-Agent System Engineering (MAAMAW-99),

volume 1647, pages 1–7. Springer-Verlag: Heidelberg, Germany, 30– 2 1999.

[79] D. Jurafsky and J. Martin. Speech and Language Processing: An Introduction to Natural

Language Processing, Computational Linguistics and Speech Recognition. Prentice Hall, 2000.

[80] C. Kennedy. A conceptual foundation for autonomous learning in unforeseen situations. In Pro-

ceedings of the IEEE International Symposium on Intelligent Control (ISIC/CIRA/ISIS’98),

Gaithersburg, Maryland, September 1998.

[81] C. Kennedy. Reducing indifference: Steps towards autonomous agents with human concerns.

In Proceedings of the Symposium on AI, Ethics and (Quasi-) Human Rights, Birmingham,

April 2000. Society for the Study of Artificial Intelligence and the Simulation of Behaviour

(AISB’00).

[82] S. Kirby. Natural language from artificial life. Artificial Life, 8:185215, 2002.

[83] T. Kohonen. Self Organizing Maps. Springer, N.Y., 2001.

[84] T. Landauer, P. Foltz, and D. Laham. Introduction to latent semantic analysis. Discourse

Processes, 25:259–284, 1998.

[85] C. Larman. Agile and Iterative Development: A Manager’s Guide. Addison Wesley Profes-

sional, 2003.

[86] D. Law and R. Mikkaulainen. Grounding robotic control with genetic neural networks. Tech.

Rep., Univ. of Austin, Texas, AI94223, 1994.

[87] D. Lenat. Cyc: A large-scale investment in knowledge infrastructure. Communications of the

ACM, 38(11):33–38, 1995.

[88] L. Liikkanen. Exploring problem decomposition in conceptual design. Master’s thesis, Depart-

ment of Psychology, Universtiy of Helsinki, 2005.

[89] B. MacLennan. Grounding analog computers. Think, 2(1):48–52, 1993.

[90] G. Marcus. The Algebraic Mind : Integrating Connectionism and Cognitive Science Learning,

Development, and Conceptual Change. MIT Press, Cambridge, Mass, 2001.

[91] M. Mayo. Symbol grounding and its implication for artificial intelligence. In Twenty-Sixth

Australian Computer Science Conference, pages 55–60, 2003.

175

[92] J. McCarthy and P. Hayes. Machine Intelligence, chapter Some Philosophical Problems from

the Standpoint of Artificial Intelligence, pages 463–502. Edinburgh University Press, Edin-

burgh, 1969.

[93] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA, 1996.

[94] A. Monk. HCI models, theories and frameworks: towards a multidisciplinary science, chapter

Common ground in electronically mediated communication: Clark’s theory of language use,

pages 265–289. Morgan Kaufmann, San Francisco, 2003.

[95] R. Nakisa and K. Plunkett. Evolution of a rapidly learned representation for speech. Language

and Cognitive Processes, 13(1):105–127, 1998.

[96] A. Newell and H. Simon. Computer science as empirical enquiry: Symbols and search. Com-

munications of the ACM, 19, 3:113–126 year=1976,.

[97] K. Pastra. Viewing vision-language integration as a double-grounding case. In Proceedings

of the American Association of Artificial Intelligence (AAAI) Fall Symposium on ”Achieving

Human-Level Intelligence through Integrated Systems and Research”, Washington D.C., USA,

2004.

[98] K. Pastra. Vision Language Integration: a Double-Grounding Case. PhD thesis, Department

of Computer Science, University of Sheffield, U.K., 2004.

[99] C. S. Peirce. Collected Papers of Charles Sanders Peirce, volume 1-6. Harvard University

Press, Cambridge, MA, 1931-1935.

[100] R. Pfeifer and G. Gmez. Interacting with the real world: design principles for intelligent

systems. Artificial Life and Robotics, 9(1):1–6, 2005.

[101] R. Pfeifer and P. Verschure. The Artificial Life Route to Artificial Intelligence, chapter The

Challenge of Autonomous Agents: Pitfalls and How to Avoid Them, pages 237–263. Lawrence

Erlbaum, Hillsdale, New Jersey, 1995.

[102] E. Prem. Dynamic symbol grounding, state construction and the problem of teleology. In

J. Mira and F. Sandoval, editors, From Natural to Artificial Neural Computation. International

Workshop on Artificial Neural Networks. Proceedings, pages 619–26. Springer-Verlag, Berlin,

Germany, 1995.

[103] C. Prince. Theory grounding in embodied artificially intelligent systems. In Proceedings of

the First International Workshop on Epigenetic Robotics: Modeling Cognitive Development in

Robotic Systems, Lund, Sweden, 2001.

176

[104] H. Putnam. Meaning and reference. The Journal of Philosophy, 70(19):699–711, 1973.

[105] T. Riga, A. Cangelosi, and A. Greco. Symbol grounding transfer with hybrid self-

organizing/supervised neural networks. In IJCNN04 International Joint Conference on Neural

Networks, Budapest, July 2004.

[106] D. Roy. Grounding words in perception and action: computational insights. Trends in Cogni-

tive Sciences, 9(8):389–396, 2005.

[107] D. Roy. Semiotic schemas: A framework for grounding language in action and perception.

Artificial Intelligence, 167(1-2):170–205, 2005.

[108] D. Roy. A computational model of three facets of meaning. In M. de Vega, A. Glenberg,

and A. Graesser, editors, Proceedings of the Garachico Workshop: Symbols, Embodiment and

Meaning, December 2006.

[109] D. Roy and E. Reiter. Connecting language to the world. Artificial Intelligence, 167(1-2):1–12,

September 2005.

[110] N. Sales and R. Evans. An approach to solving the symbol grounding problem: Neural networks

for object naming and retrieval. In Proc. CMC-95, 1995.

[111] J. R. Searle. Minds, brains, and programs. Behavioral and Brain Sciences, 3:417–457, 1980.

[112] M. Shanahan. Perception as abduction: Turning sensor data into meaningful representation.

Cognitive Science, 29(1):103–134, 2005.

[113] H. Simon. The sciences of the artificial. MIT Press, Cambridge, MA, third edition edition,

1996.

[114] R. Spiegel and I. McLaren. Recurrent neural networks and symbol grounding. In Proceedings.

IJCNN ’01., volume 1, pages 320–325, Washington, DC, USA, 2001.

[115] C. Stanton and M-A Williams. Grounding robot sensory and symbolic information using the

semantic web. In RoboCup 2003: Robot Soccer World Cup VII, Lecture Notes in Computer

Science, pages 757–764. Springer, 2003.

[116] L. Steels. When are robots intelligent autonomous agents? Journal of Robotics and Au-

tonomous Systems, 15:3–9, 1995.

[117] L. Steels. Perceptually grounded meaning creation. In M. Tokoro, editor, Proceedings of the

International Conference on Multi-Agent Systems, Cambridge, MA, 1996. MIT Press.

177

[118] L. Steels. Language games for autonomous robots. IEEE Intelligent systems, pages 17–22,

October 2001.

[119] L. Steels. Evolving grounded communication for robots. Trends in Cognitive Science, 7(7):308–

312, July 2003.

[120] L. Steels. The symbol grounding problem is solved, so what’s next? In M. De Vega,

G. Glennberg, and G. Graesser, editors, Symbols, embodiment and meaning. Academic Press,

New Haven, 2007.

[121] L. Steels and F. Kaplan. Linguistic evolution through language acquisition: formal and compu-

tational models, chapter Bootstrapping Grounded Word Semantics, pages 53–74. Cambridge

University Press, 2002.

[122] L. Steels and P. Vogt. Grounding adaptive language games in robotic agents. In I. Harvey

and P. Husbands, editors, Advances in Artificial Life. Proceedings of the Fourth European

Conference on Artificial Life, Cambridge, MA, 1997. MIT Press.

[123] R. Sun. Symbol grounding: A new look at an old idea. Philosophical Psychology, 13(2):149–

172, 2000.

[124] R. Sun. Duality of the Mind. Lawrence Erlbaum Associates, 2002.

[125] R. Sun and F. Alexandre, editors. Connectionist-Symbolic Integration: From Unified to Hybrid

Approaches. Lawrence Erlbaum Associates, 1997.

[126] S. Swarup, K. Lakkaraju, S. Ray, and L. Gasser. Symbol grounding through cumulative

learning. In P. Vogt et al., editor, Symbol Grounding and Beyond: Proceedings of the Third

International Workshop on the Emergence and Evolution of Linguistic Communication, pages

180–191. Springer, 2006.

[127] M. Taddeo and L. Floridi. Solving the symbol grounding problem: a critical review of fifteen

years of research. Journal of Experimental and Theoretical Artificial Intelligence, 2005.

[128] J. Taylor and S. Burgess. Steve austin versus the symbol grounding problem. In J. Weckert

and Y. Al-Saggaf, editors, Selected Papers from the Computers and Philosophy Conference

(CAP2003), volume 37, pages 21–25, Canberra, Australia, 2004.

[129] D. Traum. A Computational Theory of Grounding in Natural Language Conversation. PhD

thesis, Computer Science Dept., U. Rochester, December 1994.

[130] A. M. Turing. Computing machinery and intelligence. Mind, 59:433–460, 1950.

178

[131] P. Vogt. Lexicon Grounding on Mobile Robots. PhD thesis, Vrije Universiteit Brussel, 2000.

[132] P. Vogt. The physical symbol grounding problem. Cognitive Systems Research Journal,

3(3):429–457, 2002.

[133] P. Vogt. Artificial Cognition Systems, chapter Language evolution and robotics: Issues in

symbol grounding and language acquisition. 2006.

[134] P. Vogt and F. Divina. Social symbol grounding and language evolution. Interaction Studies,

8(1):31–52, 2007.

[135] G. Wasson. The Design of Representation Systems for Autonomous Agents. PhD thesis,

Computer Science Department, University of Virginia, August 1999.

[136] G. Weiß. Agent orientation in software engineering. Knowl. Eng. Rev., 16(4):349–373, 2001.

[137] J. Weng. Developmental robotics: Theory and experiments. International Journal of Hu-

manoid Robotics, 1(2):199–236, 2004.

[138] J. Weng and W. S. Hwang. From neural networks to the brain: Autonomous mental develop-

ment. IEEE Computational Intelligence Magazine, 1(3):15–31, August 2006.

[139] J. Weng, J. McClelland, A. Pentland, O. Sporns, I. Stockman, M. Sur, and E. Thelen. Au-

tonomous mental development by robots and animals. Science, 291(5504):599–600, Jan 2000.

[140] S. Wermter, C. Weber, M. Elshaw, V. Gallese, and F. Pulvermller. Biomimetic Neural Learning

for Intelligent Robots, chapter Grounding Neural Robot Language in Action, pages 162–181.

Lecture Notes in Computer Science. Springer, Berlin, 2005.

[141] S. Whitehead and D. Ballard. Learning to perceive and act by trial and error. Machine

Learning, 7(1):45–83, July 1991.

[142] M-A. Williams, J. McCarthy, P. Gärdenfors, A. Karol, and C. Stanton. A framework for

evaluating groundedness of representations in systems: from brains in vats to mobile robots.

In IJCAI 2005, 2005.

[143] R. Zhao and W. Grosky. Distributed Multimedia Databases: Techniques and Applications,

chapter Bridging the Semantic Gap in Image Retrieval, pages 14–36. Idea Group Publishing,

Hershey, Pennsylvania, 2001.

[144] T. Ziemke. Understanding Representation in the Cognitive Sciences, chapter Rethinking

Grounding, pages 177–190. Plenum Press, New York, 1999.

	Table of Contents
	Abstract
	Introduction
	Motivation
	The Research Problem: Grounding
	Grounding for Practical Robotics
	Why is grounding important?

	The Need for a Methodology
	Scope
	Thesis Objectives
	Contribution
	Scientific Method
	Thesis Outline

	Grounding: Approaches and Research Areas
	Grounding: What is it?
	Layman's grounding
	Searle's Chinese Room
	Harnad's Symbol Grounding
	Brooks' Physical Grounding
	Representation Grounding
	Analog Computation

	Autonomous Grounding
	Summary

	Meaning
	Grounding and Meaning
	Internalism vs Externalism

	Intrinsic Semantics
	A Theory of Reference
	More than a theory of reference?
	Summary

	Approaches to Grounding
	Harnad's Approach
	Neural Networks

	Categorical Perception
	Machine Learning
	Self-Organising Maps
	Genetic/Evolutionary Algorithms
	Conceptual Spaces

	Symbolic Theft and Sensorimotor Toil
	Hybrid Systems
	Cognitivism versus Behaviourism
	Developmental, Learning Systems
	Summary

	Grounding Research Areas
	Language
	Natural Language Processing
	Computational Language Acquisition and Evolution
	Psychological Experiments
	Establishing ``Common Ground'' during Communication

	``Dictionary Grounding''
	Anchoring
	Vision
	Pastra's Double Grounding
	Image Retrieval and the Semantic Gap

	Action and Behaviour

	Summary and Conclusion

	Grounding: A Programmer's Perspective
	A Working Definition
	The Process of Embedding
	Groundedness

	The Difficulties of Grounding
	Representation Design
	The Relevance Problem
	The Reference Problem

	``Traditional'' Software vs Robotics Software
	Perception
	Action
	Requirements and Specification
	Testing and Debugging

	Summary

	Towards a General Grounding Solution
	Software Development Methodologies
	Agent Oriented Software Engineering
	Robotics Development Methodologies
	Brooks' Subsumption Architecture
	Wasson's Representation Design Methodology
	Real-time Control Systems Architecture(RCS)
	Behaviour Oriented Design
	Roy's Grounding Framework

	Summary and Conclusion

	Grounding Oriented Design: Introduction and Overview
	Motivation and Objectives
	Methodology Scope
	Design Considerations
	Grounded Designers
	A Software Problem
	The Relevance Problem
	Problem Decomposition and Decision-Making
	The Reference Problem
	Groundedness
	Design Considerations - Summary

	Methodology Overview
	Summary

	Grounding Oriented Design: Context-Level Analysis
	The Context-Level Skill
	Objectives
	Constraints
	Current Capabilities
	The Robot(s)
	Software

	Required Capabilities
	Separating Requirements and Design
	Eliciting Requirements - The Requirements Checklist
	Requirement Templates

	Conclusion

	Grounding Oriented Design: Part I - Basic-Design
	Introduction
	Skills
	Skill Collaboration
	Skill Diagrams
	Design Considerations
	The Basics
	Skill Naming
	Numeric Identifiers
	The Decomposition Box
	Flow-Of-Control

	The Design Process
	The Context-Level Skill
	Notation: Context-Level Skill

	Iterative Skill Decomposition
	Identifying Skills
	Example

	Skill Templates
	Example

	Identifying Skill-Transitions
	What-If Analysis
	What-If Analysis Checklist
	Examples
	Skill-Transitions - Summary

	Design: Keeping it Simple
	Layering
	Amalgamation

	Summary

	Grounding Oriented Design: Part II - Detailed-Design
	Detailed-Design
	Skill Types
	Decisions
	Actions
	Perceptions
	Sensations versus Perceptions

	Behaviours

	Knowledge Representation
	Skill Diagrams - Detailed-Design
	Flows
	Skill Types
	Concepts, Percepts and Memories

	The Design Process
	Identify Skill Types
	Guidelines for Identifying Skill Types
	Example

	Decompose Transition-Conditions
	Example

	Individual Skill Design
	Skill Design: Decisions
	Skill Design: Perceptions
	Skill Design: Actions and Behaviours

	Reviewing a Detailed Skill Architecture
	Design Review Checklist

	Summary

	Discussion and Conclusion
	Go-Design Evaluation
	Benefits of Go-Design
	Limitations of Go-Design
	Comparative Assessment
	Subsumption Architecture
	BOD
	Wasson's Representation Design Methodology
	RCS
	Roy's Grounding Framework

	Future Work
	Understanding Decomposition
	Go-Design Development Environment
	Evaluating Grounding Approaches
	Escaping the Chinese Room
	Understanding Meaning
	Grounding through Prediction

	Summary and Concluding Comments

	Grounding Oriented Design: The Step-by-Step Guide
	Context-Level
	Context-Level: Objectives
	Context-Level: Constraints
	Context-Level: Current Capabilities
	The Robot(s)
	Software

	Context-Level: Required Capabilities
	Requirement Templates
	Requirements Elicitation Checklist

	Basic-Design
	Skills
	The Basic-Design Process
	The Context-Level Skill
	Iterative Skill Decomposition
	Identifying Skills
	Identifying Skill Transitions

	Skill Templates
	Design: Keeping it Simple

	Detailed-Design
	Skill Types and Knowledge Representation
	Identify Skill Types
	Decisions
	Actions
	Perceptions
	Behaviours
	Guidelines for Identifying Skill Types

	Decompose Transition-Conditions
	Individual Skill Design
	Skill Design: Decisions
	Skill Design: Perceptions
	Skill Design: Actions and Behaviours

	Reviewing a Detailed Skill Architecture
	Design Review Checklist

	Detailed-Design Example Diagrams

	Bibliography

